
NASA-CR-19137_

HIGH-SPEED ARCHITECTURE

FOR THE DECODING OF

TRELLIS-CODED MODULATION

i

/
/

,: ,, <7/

Semi-Annual Status Report

Center for Space Telemetering and Telecommunications

Systems Grant

Period Covered: January 1992-July 1992

NASA Grant No. NAG 5-1491

Principle Investigator: Dr. William P. Osborne

'J, _.-_ _,t ?

New Mexico State University

Electrical And Computer Engineering

Box 30001 - Dept. 3-0

Las Cruces, New Mexico 88003

TABLE OF CONTENTS

Chapter

I. INTRODUCTION... 1

1 1 Purpose and Scope 1

1 2 Convolutional Codes and Viterbi Decoding 5

1 3 Trellis-Coded Modulation 21

1 4 Coding Standards 27

1 5 Basic Implementation Considerations 32

1 6 High-Speed Architecture Considerations 36

2. QUANTIZATION.. 39

2 1 General Considerations 39

2 2 Information Theory Considerations 42

2 3 Phase-Only Quantization 46

2 4 I&Q Quantization 63

2 5 The Log-Likelihood Function 68

2 6 Calculation of Probabilities and Related

Parameters 70

2.7 I and Q Quantization for the TCM Decoder 77

3. PREVIOUS TCM STUDIES.................................. 78

3.1 BOSSSimulations At NMSU........................ 81

3.2 Pragmatic TCM................................... 88

3.2.1 The 24-sector Phase Quantizer 91

3.2.2 Soft Decision Adaptation 94

3.2.3 Outboard Decision Logic 103

3.2.4 Performance of Pragmatic TCM.......... 107

ii
PRECEDING PPlGE E;LANK NO] F!LMEL_

o

3.3 Multi_ode TCM II0

3.4 Bit Error Spectrum 115

3.4.1 The Generating Function 119

3.4.2 Bit Error Spectrum Algorithm 123

3.4.3 Signal Set Mapping 129

3.4.4 Applications and Results 134

3.5 Conclusion 140

HIGH-SPEED DESIGN 142

4.1 Pipelining 147

4.2 Metric Calculation 151

4.2.1 Square Law Circuit 155

4.2.2 The Metric Adder 161

4.3 The Add-Compare-Select Circuit 163

4.3.1 The Progressive Adder and the 10_bit

Select 171

4.3.2 The ACS Feedback Loop 178

4.4 The Path Memory Circuit 186

4.5 Testing The High-Speed Codec 191

4.5.1 Selection of Quantization Parameters. .192

4.5.2 Simulation Design 195

4.5.3 High Level Simulation 196

4.5.4 Logic Level Simulation 199

4.6 Conclusion 201

°°°

111

5. CONCLUSION ... 204

5.1 Summary .. 204

5.2 Recommendations for Further Research 206

REFERENCES .. 208

iV

I. INTRODUCTION

1.1 Purpose and Scope

Since 1971, when the Viterbi Algorithm [I] was

introduced as the optimal method of decoding convolutional

codes, improvements in circuit technology, especially VLSI,

have steadily increased its speed and practicality.

Trellis-Coded Modulation (TCM), pioneered by Ungerboeck

[2,3,4] since 1982, combines convolutional coding with

higher level modulation (non-binary source alphabet) to

provide forward error correction and spectral efficiency.

For binary codes, the current state-of-the-art is a 64-

state Viterbi decoder on a single CMOS chip, operating at a

data rate of 25 Mbps [5,6]. Recently, there has been an

interest in increasing the speed of the Viterbi Algorithm

by improving the decoder architecture, or by reducing the

algorithm itself. Designs employing new architectural

techniques are now in existence, however these techniques

are currently applied to simpler binary codes, not to TCM.

The purpose of this report is to discuss TCM architectural

considerations in general, and to present the design, at

the logic gate level, of a specific TCM decoder which

applies these considerations to achieve high-speed

decoding.

The goal of TCM architecture research is" to improve

the performance TCM decoders with a minimum of hardware

expansion. The emphasis is on 8-PSK and 16-PSK signalling,

which provide spectral efficiency and constant amplitude,

desirable attributes for satellite communications. Issues

of interest include speed of operation, error correction

capability (coding gain) and multimode operation, that is,

the ability to process multiple modulation formats using a

single device with a minimum of total hardware.

A number of approaches to the design of a high-speed

TCM decoder are considered: i) algorithmic reductions,

which reduce processing time and hardware, 2) hardware

expansion, or parallelism, increasing the throughput at the

cost of additional hardware, 3) approximations:

modifications to the algorithm which reduce hardware and

processing time at the cost of compromise in performance

(coding gain), 4) reductions in hardware which reduce total

circuit area and allow implementation in a technology

faster than CMOS. The Viterbi Algorithm co_sists of three

distinct parts: metric calculation, the add-compare-select

function, and path memory updating. Other parts of the

process, which are not considered central to the Viterbi

algorithm itself but are nevertheless necessary to the

complete decoding system, are the quantization of the

received signal vectors, and external circuitry to perform

2

various other functions. Examples of these other functions

include outboard decision making, and the generation of

soft decisions used to adopt an existing binary decoder to

a non-binary channel in a pragmatic [7] TCM system. As

shall be shown each of the aforementioned parts of the

system has the potential to impact the speed of the

algorithm, and the volume of the required hardware. Also,

each part of the system has the potential for reduction.

The format used to quantize the received signal vector

directly determines the number of bits needed to represent

the numerical quantities used in the algorithm. This

ultimately affects the size of the device. Also, the

choice of quantization will affect the coding gain

[8,9,10]. Metric calculation must be directly matched to

the quantization format. Metrics for any kind of coding

system can be obtained by using the quantized decoder input

as an address in a ROM, however there are advantages to be

realized by designing special circuitry to calculate the

metrics. The design presented in this paper obtains the

metrics from combinational logic, avoiding the bulk and

access time of a ROM, and allowing extensive pipelining.

The add-compare-select function includes a feedback

loop that precludes pipelining. Fettweis and Meyer [11,12]

consider this to be the principle bottleneck in the Viterbi

Algorithm, and propose to speed up this part of the process

by combining multiple trellis stages into. a super trellis

stage with greater connectivity. To date, however, this

technique has been applied only to simpler binary codes,

and not to a TCM code.

The path memory consists of memory cells and switches

interconnected in a way that reflects the trellis structure

of convolutional codes. The memory is not complex, but is

a significant user of chip area, a factor which is affected

by the choice of coding standard. The external logic has

less impact on speed of operation than do the other parts

of the system but is necessary to the functioning of a

complete system, especially if pragmatic TCM is used.

The essential parts of a TCM system have been briefly

surveyed in the preceding paragraphs and will be discussed

in greater detail later. One remaining issue to be

mentioned briefly at this point is the selection of the

code to be used. In general, the more powerful TCM codes

require larger decoding machinery. The decoding

performance of TCM codes has been well researched

throughout the eighties; however, less is known about the

effect of the choice of code on the architecture. In 1989

Viterbi [7] published the invention of pragmatic TCM,

giving a number of very strong reasons why pragmatic TCM is

likely to become the TCM coding standard of the future.

Based on what has been learned in the preceding years, it

4

is unlikely that pragmatic TCM will be significantly

improved upon, except at great expense. For example, rate

2/3 8-PSK TCM using the best known 64-state convolutional

code achieves a coding gain of approximately 3.6 dB over

uncoded QPSK, while pragmatic TCM using a simpler 64-state

code achieves about 3db. Rate 2/3 8-PSK TCM, using a 1024-

state code provides an approximately 1 dB improvement over

the best 64-state code [13]. So efforts to improve on

pragmatic TCM are probably unwarranted at this time.

However, the performance of pragmatic TCM can be matched by

using the best known 16-state Ungerboeck code, which can be

implemented by a smaller machine. In terms of hardware

volume, the two codes are close since the pragmatic code is

simpler than the 16-state code in ways that make up for the

greater number of states. However, the 16-state code was

decided upon, for reasons that will be discussed throughout

the remainder of this work.

1.2 Convolutional Codes and Viterbi Decoding

A simple convolutional encoder is shown in Figure I.i.

The device consists of a three-stage shift register with

two binary (modulo-2) adders connected to the stages of the

shift register as shown. Each binary adder functions as a

5

parity check, or an exclusive or. This encoder, although

simpler than encoders used in practice, generates a

reasonably powerful code. Data to be encoded is shifted

into the shift register one bit at a time, then the code

bits, c O and Cl, form the output sequence. This encoder

generates two code bits for every bit to be encoded, and

thus is said to have a code rate of 1/2. The fact that the

number of code bits exceeds the number of input bits makes

it possible to reconstruct the correct sequence, even if

some of the codebits are received in error.

GO

GI

Figure i.i. 4-state convolutional encoder.

The Viterbi algorithm for decoding a convolutional code

sequence is based on the finite-state behavior of the

convolutional encoder. The shift register in the

convolutional encoder of Figure I.I, has two bits of

6

memory. The first of the three stages is the current

input, and so is not considered as memory. This encoder

then is a 4-state machine, or 4-state convolutional

encoder, and the code which it generates is referred to as

a 4-state convolutional code. The contents of the memory

stages defines the state, with so being the least

0100

011 1

0110

I I00

0/01

1111

1110

KEY: @ X/CoG1

1/01

Figure 1.2. State diagram for 4-state convolutional

encoder.

significant state bit, and Sl being the most significant

state bit. The relationship between current state, current

input, current output, and next state is illustrated by the

state diagram of Figure 1.2. A state j which can make a

7

transition to some state i is referred to as a predecessor

to state i, and state i is referred to as a successor to

state j. An output is associated with each allowed

transition between two states. To represent all or any

number of possible state transition histories over some

period of time, the four states are arranged vertically,

and then repeated horizontally to an arbitrary number of

stages, resulting in the trellis diagram of Figure 1.3.

SlS 0 CoC1

O0
O0

01

10

11

10

10

11
01

Figure 1.3. 4-state trellis diagram.

The trellis diagram shows the same state transitions as the

state diagram, the difference being that the state diagram

is static, whereas the trellis diagram illustrates the

behavior of the encoder over a number of periods of time.

The branches of the trellis diagram, representing

state transitions, are labeled with the appropriate

outputs. Any output sequence which the encoder will

generate is made of the outputs associated with the

branches of some continuous path through the trellis. If a

receiver error occurs, the received sequence will most

likely not be a legitimate code sequence, in which case the

receiver must find the legitimate code sequence which most

closely matches the received sequence. When binary

signalling is used, the sequence is selected on the basis

of Hamming distance, the number of corresponding bits in

which a possible code sequence differs from the received

sequence. Depending on the method of signalling, a measure

other than Hamming distance could be used as a basis of

selection. The measure to be used is referred to as the

metric, and the decoder is said to find the minimum metric

path. It is impractical to accomplish this by comparing

the received sequence with every possible path, since the

number of possible paths doubles with each stage of the

trellis.

The Viterbi algorithm avoids this massive number of

comparisons by taking advantage of the finite-state

property of the convolutional encoder. At any given time,

9

regardless of which state the encoder is actually in, there

exists a minimum metric path to each state. The minimum

metric path to some state s. at some time k must include,
3

as a subpath, the minimum metric path to a predecessor to

state s. at time k-l. The number of subpaths which must be
3

considered at any time is therefore limited to the number

of states.

Dynamic programming [14] is a well established

algorithm for solving problems in which the solution at

some stage of operation is a subset of the solution at the

next stage. It was Viterbi's insight that Dynamic

Programming can be used to decode a convolutionally encoded

sequence, therefore the use of dynamic programming in this

way is referred to as the Viterbi algorithm. The Viterbi

algorithm works as follows: associated with each node of

the trellis, which represents a state of the encoder, is a

minimum metric path to that node, and a metric for that

path. The metric of the minimum metric path to a node is

also referred to as the state metric or cumulative metric.

Initially, when no part of the code sequence has been

received, all of the node metrics are zero. Each time a

symbol (a pair of codebits) is received, the received

symbol is compared to each branch symbol and a metric is

associated with each branch of the current stage of the

trellis. Each branch metric is added to the cumulative

I0

metric at its origin node to form a new path metric. At

each node of the current stage, the converging path with

the least metric is selected, and the metric associated

with this path is selected to be the new cumulative metric.

uu

<

09

CORRECT SEQUENCE:

CLC0=11 01 11

k=0 k=l k=2 k=3

slso=00_("_ O0 (2)[2] _'_00 (1)[1] (_ O0 (2)[3] _)

(s=O)

SlS0=01 oz
(s=l)

<.

slso=10

(s=2)

SlS0=11

(s=3)

KEY: (_ CUMMULATIVE METRIC

() BRANCH METRIC

[] PATH METRIC

XX CODE SYMBOL

ALL PATHS

SELECTED PATH

Fiqure 1.4. Viterbi decoding example.

As an example, suppose a single "I" is shifted through

the shift register of the encoder. The resulting output

sequence is 110111. The application of the Viterbi

algorithm to this sequence is illustrated in Figure 1.4.

At k=0, with no source code having been received, all state

]!

nodes are set initially to zero. When the first symbol,

ii, is received, branch metrics are computed for all

branches, i.e., 2,1,1,0 for branches having symbols 00, 01,

i0, ii respectively. Because the initial cumulative

metrics are all zero, the converging path metrics are the

same as the branch metrics. At node (k,s) = (i,0), the

lower branch is selected, having a path metric of 0, which

becomes the new cumulative metric for state 0. At state I,

the upper branch is selected. At states 2 and 3, the upper

and lower branches have equal metrics of I, so the upper

branch is selected arbitrarily.

At stage k:2, the same process is repeated, except

that now there are non-zero previous cumulative metrics to

be added to the branch metrics. At node (k,s) = (2,0), the

upper branch has a previous cumulative metric of 0 and a

branch metric of i, resulting in a path metric of I. The

lower branch has a previous cumulative metric of 1 and a

branch metric of i, resulting in a path metric of 2. The

upper branch, having the least path metric, is selected,

resulting in a state metric of i. Likewise, the upper

branch is selected at nodes (k,s) = (2,1), and (2,2), the

lower branch is selected at node (2,3), resulting in state

metrics of I, 0, and I, respectively. At the third stage

the process is repeated again. The correct path is

identified by tracing backwards through the trellis. State

0, having the least state metric at the third stage, in

12

this case 0, is the starting point for the trace back. The"

lower branch has the lesser path metric, and leads back to

node (2,2). At this node, the upper branch is selected,

leading back to node (i,I) . Here, the upper branch is

selected, leading back to node (0,0), correctly identifying

the sequence.

In the example of Figure 1.4, the encoder started in

state 0 and finished in state 0. The decoder starts with

all zero state metrics at stage 0, reflecting the fact that

when no sequence has been received the decoder has no

knowledge of the state of the encoder. After receiving 3

branches of correct code sequence, only the correct state

has a metric of 0, the state metrics being 0, i, 2, and 2,

respectively. This reflects the fact that the decoder now

has some information as to the current state of the

encoder. The state metrics are updated each time a new

code symbol is received, and the degree of certainty as to

the state of the encoder depends on the metrics and the

probability of error in transmitting a code bit, a

characteristic of the channel. At all times, except during

the brief start-up period, the decoder is operating with

state metrics calculated from the previously received

sequence, so it is the decoder's behavior in this condition

which is of primary interest. Once the decoder has

13

received six stages of error-free symbols as is shown in

Figure 1.5, the cumulative metrics reach steady state

values.

With the decoder having reached this equilibrium,

suppose that the encoder is made to transmit the same

sequence as before, but this time two ol the transmitted

bits are received in error, so that the sequence ii0111 is

received as i00011. Figure 1.6 illustrates the operation

of the decoder given this sequence, and is labeled with

branch metrics, path metrics and state metrics, as is

Figure 1.4. As can be seen, the Viterbi algorithm selects

the correct sequence, although three further stages of

operation are necessary for it to do so. If we receive the

sequence with three errors, shown in Figure 1.7, the

decoder selects an incorrect path. Thus we can see that

the decoder has a positive but not unlimited capacity to

correct errors.

The convolutional encoder is linear, i.e., the output

due to the sum of two sequences is the sum of the outputs

due to the individual sequences. Because of this, the

encoder can be analyzed from the point of view that the all

zeroes code sequence is correct, and the conclusions drawn

will be applicable to all sequences in general (see Lin and

Costello [15], Clarke and Cain [16], or Forney [17]). The

examples of Figures 1.5, 1.6, and 1.7, show the Viterbi

14

o
0

o
0

g

o
0

0
0

0
0

1.1.1

g

g

g

g

0

u

-,-4

,q

o

°,--I

,-i

15

0
0

0
o 8

O0

o

-,-I
,-t

_4
E_

U

0
L)

k.O

I-4

-,-I

16

o
0

0
o

o
0

o
0

T-

1--07o
u.I u.i
rr_
r'roo

o
0

o
0

0

0
0

0

O0
III U.I
cc_ ®

o

,--I

@

E-_

"D

L_

0
c_

r_

r-i

D_
-,-I

17

decoder tracing backwards from the minimum metric node. In

fact, the path formed by tracing backwards from any node

will tend to merge back to the maximum likelihood path,

given enough time. The time required depends on the

properties of the code and the channel, as well as the

specific interfering noise. This means that the Viterbi

decoder's memory does not need to retain the likely paths

for all time, but only back to the point at which there is

a high probability that all paths will be merged. The

decoder operates the path memory in a pipeline fashion,

such that old information is shifted out as new information

is shifted in. If the path memory is made long enough,

there is a high probability that the information being

shifted out will be correct. There is still a nonzero

probability of error, because it is possible that the

transmission errors will be such that an error sequence

more closely matches the received sequence than does the

correct sequence. If this happens, the error-correcting

capacity of the code is exceeded.

The error path illustrated in Figure 1.7 diverges from

and then reconverges with the correct path. This is

typical, because the metrics of non-converged error paths

grow to the point that it is overwhelmingly likely that the

Viterbi algorithm will eliminate them. Therefore, it is

18

the reconverged error paths which are of concern in

predicting the performance of the code. Typical error

sequences are shown in Figure 1.8. The decoder will select

O0 O0 O0 _

o
0 0 0 0

3-BRANCH ERROR

O0 O0 O0 _ O0

0 0

0 0 _ 0 0
4-BRANCH ERROR

O0 O0 O0 O0 O0

0 0

0 0 _ 0 0

5-BRANCH ERRORS

Figure 1.8. Typical error paths for 4-state code.

an error sequence if at any point the received sequence

more closely matches an error sequence than the correct

sequence. The probability that this will happen depends on

the Hamming distance between the error sequence and the

correct sequence. Thus we can see that the three-branch

19

error sequence is of the most concern as it differs from

the correct sequence in only 5 bit positions. If three or

more of these five bits are received in error, the three-

branch error path will be selected. The longer error paths

are less likely, as they differ from the correct path in a

greater number of bits, yet they still make a non-

negligible contribution to the total probability of error.

More powerful codes can be generated by using a

convolutional encoder with more than a three-stage shift

register, which will increase the number of states and the

constraint length. The constraint length, K, is the

minimum number of branches in which two paths can diverge

and then reconverge. The constraint length for the code

used in the previous examples is 3. In general, increasing

the constraint length makes it possible to achieve greater

Hamming distances for the error paths, and hence reduces

the probability of error. This also increases the number

of states, so the Viterbi decoder must then be built

correspondingly larger. It is also possible to use more

than two shift registers, generating more than two codebits

for every data bit shifted in, or to design encoders which

shift in more than one data bit for each codebit,

generating codes of various code rates, i.e., 1/3, 1/4, 2/3

etc.

20

Obtaining the potential power of a code of given

constraint length and code rate requires finding the

optimal tap settings, that is, the best connections of the

shift register to the adders. There is no analytical way

to do this; however, the rule that the metric of the

minimum metric error path should be maximized has proven

effective. The codes in use today were found by exhaustive

searches, comparing the minimum distance error events of

the various codes. For the rate 1/2 4-state code, the

minimum metric error path is also a constraint length path,

but this is not necessarily the case for the more complex

codes. Therefore, finding the most powerful codes is no

straightforward task.

1.3 Trellis-Coded Modulation

Trellis-Coded Modulation (TCM), the invention of

Ungerboeck [2,3,4], is the application of convolutional

encoding and Viterbi decoding to non-binary channels to

obtain the advantage of bandwidth efficiency. The Viterbi

algorithm for TCM is essentially the same as it is for

binary codes, the important differences being that the

binary code symbols have been replaced by signal vectors,

and that the metric is the square of the Euclidean distance

in the signal set space, rather than the Hamming distance

in the binary space. As an example of a TCM system,

2!

consider the arrangement depicted in Figure 1.9. The

binary data to be encoded is divided into two streams, one

of which is fed into a rate 1/2 4-state convolutional

encoder as discussed in the previous section, the other of

which goes directly to the signal set mapper. The two bits

Xl _ CONV C1_ENCODER

X 0 v

8-PSK
SIGNAL
SET

8-PSK
SYMBOL

Figure 1.9. Rate 2/3 8-PSK TCM encoder.

011

(2)

010 (3)_ /(1) 001

loo (4) _ m (o) ooo

(6)
111

XoCoCl
8-PSK
SYMBOL

Figure i. I0. 8-PSK TCM signal set.

from the encoder, and the data bit which bypasses the

encoder are mapped onto an 8-PSK signal set as shown in

Figure I.I0. This arrangement is referred to as rate 2/3

22

encoding, because the 8-PSK symbol carries 3 code bits

representing two encoded bits. The trellis diagram for

this system is shown in Figure i.ii. Here, there are two

branch symbols associated with each state transition,

because only one of the two data bits determines the next

state of the encoder, thus there are two ways to make any

0

4

2

4

5

Figure i.ii. Trellis diagram for 4-state rate 2/3 8-PSK

TCM.

given state transition. The Viterbi algorithm operates as

in the first example, except that the squares of Euclidean

distances between received signal and signal set vector are

used in place of the Hamming distances.

23

As in the binary case, error events are paths which

diverge from the correct path and then reconverge. The

code sequence can be thought of as a vector whose dimension

depends on the length of the sequence, i.e., a sequence of

N two dimensional vectors can be treated as a vector of

dimension 2N. The probability of error depends on the

Euclidean distance between the sequence associated with the

correct path, and that associated with an error event. The

minimum distance error event for the system of Figure 1.9

is shown in Figure 1.12. The minimum distance error event

is the most important error event, but longer error events

also contribute significantly to the probability of error.

0 0 0
0 0

Figure 1.12. Minimum distance error event for 4-state rate

2/3 8-PSK TCM.

As in the binary case, it is possible to generate more

powerful codes by using encoders with greater number of

24

states. For rate 2/3 8-PSK, encoders of 4,8,16, and 64

states are illustrated in Figure 1.13. The 16-state and

64-state encoders shift two data bits into the register

each time a code symbol is generated, while the 4-state

_Y0 _Y0

Xl Xl

Y1 Y1

X0 _'_'--Y2 X0 L_"-Y2

(A) (B)

r
•-Ib,-2-BIT SHIFT

Z2

(c)

I

2-BIT SHIFT (O)

Figure 1.13. Rate 2/3 8-PSK TCM encoders: a) 4-state, b)

8-state, c) 16-state, d) 64-state.

25

and 8-state encoders shift in only one data bit, the other

going directly to the signal set mapper. Given an encoder

of a specific number of states, there is no simple

analytical method to determine which of many possible tap

settings will generate the best code; however, Ungerboeck

has established principles for finding the better codes.

First of these is the minimum metric criterion, that the

code having the greatest metric for the minimum metric

error event is expected to be the more powerful code (this

is analogous to the minimum Hamming distance rule for

binary codes). Next Ungerboeck established the set

partitioning principles, which aid in maximizing the

minimum distance: I) all symbols are used with equal

frequency, 2) symbols which have the greatest distance are

assigned to parallel branches (branches which connect the

same pair of states), and 3) symbols with the next greatest

distance are assigned to branches which either diverge from

the same state and reconverge to the same state. Using

these principles, Ungerboeck conducted exhaustive searches

to find the most powerful codes for 8-PSK, 16-PSK and a

variety of QAM constellations using codes of varying number

of states.

26

1.4 Coding Standards

The coding standard is the complete specification of

the method to be used to represent the original data on the

communications channel. This includes the type of code

(such as convolutional or block) the code rate, the block

length for a block code or the constraint length for

convolutional code, the specific code to be used (tap

settings or generator polynomials), and the specific signal

set (binary, QAM, PSK, etc.). The rate 1/2, constraint

DATA_ I
IN 1

I
I I I

v\

I

Figure 1.14. Industry standard rate 1/2 K=7 convolutional

encoder.

length 7 convolutional encoder shown in Figure 1.14 is in

common use today, and is referred to as the "defacto

industry standard" [6,7]. Satellite links use this encoder

in combination with a block code and convolutional code,

with BPSK or QPSK signalling.

27

For PSK or QAM signalling, the required bandwidth is

essentially proportional to the rate at which symbols are

transmitted, and depends very little on the number of

distinct symbols used in the system. Increasing the number

of symbols increases the amount of information that can be

transmitted in a given bandwidth (the spectral efficiency),

but also increases the probability that one symbol will be

mistaken for another (the probability of error), given the

same average energy. While current terrestrial links may

use signal sets of 256 symbols or more, current satellite

links are almost entirely BPSK or QPSK. Future increases

in demands for space communication are expected to require

an increase in the spectral efficiency of satellite links,

which will in turn require a shift from QPSK to a higher

level of signalling (a signal set of more than 4 symbols).

For a number of reasons, constant amplitude signalling is

preferred for use in satellite communications. To increase

spectral efficiency while preserving the property of

constant amplitude signalling, the logical next step is a

move from QPSK to 8-PSK, and possibly later to 16-PSK.

However, due to the fact that satellite links are power-

limited as well as bandwidth-limited, the use of error

correction coding is also necessary. Therefore, the

emphasis of this work is on rate 2/3 8-PSK, although rate

28

3/4 16-PSK is also covered in the section on the multimode

codec, Section 3.3.

The power or energy saved by using an error correcting

code is referred to as the coding gain. This is the

difference in required signal to noise ratio for coded and

unccded systems maintaining the same bit error rate. In

order for the comparison to be meaningful, the systems

compared must have the same spectral efficiency. Thus the

coding gain of a rate 2/3 8-PSK system is determined by

comparison with an uncoded QPSK system, both of which carry

two data bits per symbol. From the searches of Ungerboeck,

it was found that for rate 2/3 8-PSK, most of the available

coding gain is realized by the 4-state code, with

diminishing marginal returns being obtained through 128

states. Indeed, it appears that most of the worthwhile

coding gain is obtained at 64 states, although the

construction of larger encoders might be worth the expense

in certain specialized applications. As an example, a

decoder for a 1024-state code, 16 times the size of a

decoder for a 64-state code will produce a coding gain of

approximately IdB beyond that of the best 64-state code

-5
known. At a bit error rate of i0 , the 64-state

Ungerboeck code achieves a coding gain of approximately 3.6

dB over uncoded QPSK. This is disappointingly less than

29

the coding gain predicted by considering only the most

likely (minimum distance) error event.

Pragmatic TCM, the invention of Viterbi [7], uses the

defacto industry standard convolutional encoder of Figure

1.14, in the TCM configuration of Figure 1.9. This

arrangement, applicable to a variety of signal

constellations, produces a potential coding gain of 3 dB

when used for rate 2/3 8-PSK. Viterbi sets forth several

strong arguments for the use of pragmatic TCM: pragmatic

TCM is straightforward to implement, uses a currently

available industry standard decoder, and uses the same

decoder for a variety of modulation schemes, while

sacrificing very little in coding gain compared to the

optimal code. One of the advantages of the pragmatic

standard is the possibility of multimode codec design, a

TCM system which handles a variety of modulation formats

with a single Viterbi decoder and a minimum of additional

hardware. Design considerations for such a device are

discussed in [18]. For these reasons, pragmatic TCM is

expected to become the primary coding standard of the next

decade.

As pointed out, pragmatic TCM has many practical

advantages, however, in terms of coding gain, pragmatic TCM

is not the optimal code for 64-state TCM. Indeed,

pragmatic TCM is asymptotically limited to a coding gain of

30

3.2 dB, whereas the optimal 64-state code, achieving a

-5
coding gain of 3.6 dB at a bit error rate of I0 achieves

continually improving coding gains at error rates less than

-5
i0 The argument in favor of pragmatic TCM is that it is

worthwhile to sacrifice 0.4 dB of coding gain in exchange

for certain practical advantages. However, in an

application in which 3 dB of coding gain is satisfactory,

one might also consider the use of the 16-state Ungerboeck

code, which also achieves a coding gain of 3 dB at a bit

-5
error rate of I0 and allows the use of a smaller Viterbi

decoder. Also, the 16-state Ungerboeck code achieves a

coding gain better than 3 dB at bit error rates less than

-5
i0

The choice of coding standard directly effects the

architecture of the decoder. The size of the decision-

making circuits and the path memory circuits is dictated by

the structure of the trellis representing the code. The

use of a smaller decoder is advantageous in consideration

of high-speed architecture. It should be pointed out that

the trellis for the pragmatic standard has only two

branches converging into each node (that is from the point

of view of the Viterbi decoder, the decision between

parallel branches is accomplished external to the Viterbi

decoder) whereas the 16-state Ungerboeck code has a trellis

with four branches converging into each node. The

31

consequence of this is that the 16-state code requires

approximately half as much hardware as the pragmatic code,

rather than one fourth, as would first be thought by

looking only at the number of states. Also, the need to

make four-way decisions at each node adds additional

complications. Therefore, the decision between the

pragmatic code and the Ungerboeck code turns out to be

rather close. Also, the techniques presented here could

have been applied to the pragmatic code, or almost any

other useful code. However, based on the consideration of

all factors involved, the design presented here uses the

16-state Ungerboeck code.

1.5 Basic Implementation Considerations

From the preceding description of the Viterbi

algorithm, one can begin to form an idea of what is

required to implement the Viterbi algorithm in hardware.

Three distinct operations are involved: i) calculation of

the branch metrics, 2) calculation of the path metrics and

selection of the minimal metric path to each node (the

"add-compare-select" function), and the path memory.

Metric calculation depends directly on the type of

signalling used. In the case of binary signalling with

binary channel outputs, logic is needed to calculate

Hamming distances, whereas slightly more sophisticated

32

logic would be required if the use of a soft decision

metric is desired. For TCM, the metric is the square of

the Euclidean distance, and depends on the geometry of the

signal set. In principle, the metric for TCM is a real

number. Floating point calculation of metrics may be

implemented, but there is no actual advantage in doing so,

since the same performance can be obtained by using

sufficiently fine quantization of the receiver signal space

and the metrics, and using integer arithmetic.

Incidentally, the required precision for numbers used to

represent the received vectors and the associated metrics

is an issue that would have to be faced regardless of

whether integer or floating point arithmetic is used,

because even floating point arithmetic units would have to

be designed to accommodate a decided number of decimal

digits. In fact, in designing a decoder for maximum speed,

all arithmetic circuits should be custom designed for each

specific calculation, so floating point arithmetic is not

even considered, and all involved quantities are quantized

to an appropriate integer scale. The issue which

ultimately drives the entire design is the number of bits

actually needed to represent the given quantity, which can

be anywhere between 3 to 12, depending on the particular

calculation, the coding standard, and the performance

requirement. For this design, simulations were performed

33

to determine how the performance of the decoder would be

affected by quantization of the received signal vectors and

the metrics. This had to be done after the coding standard

was decided upon.

It is possible to obtain the metrics from read only

memory (ROM) lookup tables or from in-line arithmetic.

This design shows that all of the metrics required for the

8-PSK circuit can be obtained by combinational logic using

an equal or lesser number of logic gates than would be

required for a ROM providing exactly the same metrics.

Also, the arithmetic circuits offer the advantage of

improved speed through pipelining. Included in the metric

calculation of this decoder is a circuit which calculates

the eight-bit square of a four bit number, and adding units

fit especially to the application.

The add-compare-select circuit must include a register

for the cumulative metric, compare path metrics and select

the minimum, and have a means for handling metric overflow.

At the binary level, the comparison operation is very

similar to the addition operation, and can be pipelined.

In the decoder discussed here, the problem of metric

overflow was avoided by using the modulo-arithmetic method

of Hekstra [19]. The add compare and select function will

be more complicated if four paths converge into each node,

as opposed to only two, and it turns out that a four-way

34

decision unit requires roughly twice the hardware of a two-

way decision circuit.

The path memory circuit retains the paths selected by

the add-compare-select circuit. The information which must

be retained is the path selected at each node of the

trellis, for all states of the code, and for the number of

stages which must be retained to insure that all selected

paths will merge. The number of stages retained is

referred to as the decoder depth. If two paths are merged

into each node, one bit of information is required per

node; However, if four paths are merged, two bits are

required. Thus the total capacity of the path memory

circuit is number of states times decoder depth times the

base two logarithm of the number of paths converging to a

node. This means that the 16-state Ungerboeck code

requires about half the memory of the pragmatic code, or

one fourth the memory of the 64-state Ungerboeck code. In

general, a longer constraint length code requires a longer

decoder depth, although a greater number of branches

converging into a node requires a longer decoder depth

relative to the constraint length, another factor to be

considered in selecting the code to minimize the size of

the hardware. It is possible to design the circuit so that

the information in the memory is the sequence of data bits

associated with the various paths. In this approach,

35

decoded data is clocked out of the path memory at the same

rate that received (and quantized) signal vectors are

clocked into the metric calculation unit, although with a

delay imposed by the decoding circuitry.

1.6 High-Speed Architecture Considerations

The throughput of the Viterbi algorithm, or nearly any

other operation, can almost always be increased by building

identical units side by side to perform the same operation.

This approach, referred to as parallelism, increases the

throughput rate by the same factor as the volume of the

hardware is increased. Therefore, an increase in speed

which is linearly proportional to an expansion in hardware

is seen as a technical baseline; a technical achievement

would be an increase in speed with a less than proportional

increase in hardware. The design presented here will

accomplish this. If a way to reduce the hardware volume

were found, several parallel units could be built in the

same area previously used for only one, accomplishing the

desired improvement in speed-to-hardware ratio. Therefore,

the problem of increasing speed, and that of reducing

hardware are in many respects the same problem.

The timing associated with on-chip operations is a

small factor compared to that required for chip to chip

connections. Therefore, high-speed design ideally focuses

36

on single chip architecture, although Fetweiss and Meyr

[11,12] work around this obstacle by building parallelism

in very large blocks. The choice of VLSI technology offers

tradeoffs between speed and chip area. Gallium Arsenide

technology offers higher speed but lesser chip area than

CMOS. State-of-the-art technology allows a 64-state binary

Viterbi decoder on a single CMOS chip [5,6], and Qualcomm

plans to offer pragmatic TCM on a single chip in the near

future [20]. One possibility for increase in speed would

be reduction of the algorithm to a scale that would allow

the use of the faster technology, another way in which

hardware reduction is closely related to speed improvement.

Much of the current research in high-speed Viterbi decoding

involves hybrid technologies, i.e., using the faster

technology for the speed critical parts of the operation,

and slower technology for the rest [21]. To date, a

variety of novel techniques for high-speed Viterbi decoding

are being applied to binary codes of less than 16 states,

but not to more complex codes or TCM.

As discussed in the preceding paragraphs, the

objective of high-speed architecture is to achieve an

improvement in the ratio of speed-to-hardware volume. In

absolute terms speed and hardware volume depend on the

specific family of hardware chosen for the construction of

the chip, however relative comparisons of various logic

37

designs can be made in terms of gate counts and gate

delays. Thus the logic design can be optimized before the

physical design problems are undertaken. For example: a

CMOS inverter consists of two MOS transistors, while a NAND

gate or a NOR gate consists of four transistors. Other

basic logic elements, such as exclusive ORs and latches can

be rendered as combinations of inverters, NAND gates and

NOR gates. In this way, the overall circuit can be looked

at in terms of volume and timing.

The design to be presented here uses extensive

pipelining, using a fixed number of gate delay between

pipeline stages. The design is totally synchronous, so

that a single clock will drive the entire decoder system

from beginning to end. The code used is the rate 2/3 8-PSK

16-state Ungerboeck code. Throughout the discussion, where

possible, consideration will be given to the results which

might have been obtained by applying similar design

strategies to the pragmatic code. Throughout the remainder

of this work, the design of the decoder will be discussed

in terms of gate volume and gate delays, and the reasoning

behind all design decisions will be explained.

38

2. QUANTIZATION

2.1 General Considerations

Ideally, Viterbi decoding of TCM would use floating

point numbers for the received signal vectors, as well as

the Euclidean metrics. However, due to the fact that,

regardless of the technology used, it is impossible for

floating point calculations to match the speed of integer

calculations, some type of quantization will be employed,

representing the involved quantities with a finite number

of bits, and allowing metrics to be obtained from lookup

tables, or by integer arithmetic. Quantization will always

result in some degradation of error-correcting performance,

but given an appropriate quantization scheme, performance

can be made arbitrarily close to unquantized performance,

by making the quantization sufficiently fine.

Quantization of the received signal vector may take a

number of forms, the most prevalent being phase-only

quantization, phase radius quantization, and rectangular

coordinate (I and Q) quantization. This is because the

problem of designing quantizers of these forms is at least

approachable, whereas quantizers designed to suit

generalized decision regions can be excessively complex.

Regardless of the form of quantization chosen for the

received signal vector, there is the additional issue of

39

quantization of the branch metrics. Metric quantizatlon is

closely related to, and directly affected by signal set

quantization, but is an additional design consideration in

its own right.

The required resolution of the received signal vectors

and the metrics is also affected by the choice of coding

standard. As an example of this, consider the following.

Research done as part of the NMSU multimode codec study

[18], which used the pragmatic standard, found that in the

rate 2/3 8-PSK mode, 8-bit quantized I&Q with 4-bit metrics

performed essentially as well as unquantized I,Q and

metrics, whereas 4-bit I,Q and 4-bit metrics lost about 0.2

dB. Once it was decided that the high-speed design would

use the 16-state Ungerboeck code rather than the pragmatic

code, it was necessary to determine the necessary

resolution of I,Q, and metrics. It was found that unlike

the pragmatic code, the 16-state code required 5-bit

metrics for satisfactory performance, using 4-bit I&Q. The

16-state code benefitted significantly from the use of 5-

bit I&Q but then, only if 6-bit metrics were used. This

was quite contrary to the experience with the pragmatic

code.

It is reasonable to ask why the 16-state code should

be more sensitive to quantization, especially of the

metrics, than the pragmatic codes. The performance of any

practical decoder is the combined result of the inherent

4O

error-correcting power of the code and the quality of the

information given to the decoder's decision unit in the

form of metrics calculated from the received signal vector.

Es
For unquantized 8-PSK, at - 10dB (bit error rate between

NO

10 -5 and 10-6), the performance of the 16-state code is

essentially equal to that of the pragmatic code. It is

therefore reasonable to ask if the same degree of metric

quantization represents a different quality of information

to the 16-state decoder than to the pragmatic decoder.

This can be seen to be the case, because the pragmatic

decoder selects the four signal vectors nearest the

received vector (the outboard decision) before proceeding

with the Viterbi algorithm. Therefore the pragmatic

decoder compares four signal vectors on the basis of the

metrics, whereas the 16-state code must use the metrics to

distinguish between all eight vectors. The outboard

decision does in fact represent an additional bit of

information. The choice of quantization scheme for the

high-speed decoder was based on simulation results, not on

speculation, but the foregoing argument was advanced to

show that the observed results are reasonable. It would be

interesting to perform further experiments to verify that

the effect of the outboard decision on the signal

constellation is in fact the reason for the difference in

sensitivity to metric quantization.

41

2.2 Information Theory Considerationc

In nearly all of the TCM research done at NMSU, the

performance of various quantization schemes has been

determined experimentally, through simulation. It is also

of interest to look at quantization from the point of view

of information theory. According to classical information

theory, especially the developments of Shannon [22], the

probability distribution of the outputs of any channel with

respect to the inputs establishes fundamental limits on the

rate at which useful information can be transmitted through

the channel. Two parameters of interest in this respectare

the channel capacity, C, and the random coding bound, R0,

to be discussed later. In general, practical technology

does not achieve the limits indicated by these parameters;

however, they are of interest because all reasonably

designed codes, at whatever complexity, will show similar,

relative gains and losses in response to changes in these

quantities. For TCM systems, the source has a discrete

signal set, but due to the presence of noise (which is

usually assumed to be additive white Gaussian), the

received signal is a continuously distributed vector. The

quantizer converts the received vector into a discrete

output, causing the source, transmission medium, and

quantizer to form a discrete channel. Let the set of source

symbols be denoted {s i} for i=0,...,M-i and the set of

42

output symbols be denoted {zj) for j=0,...,N. The discrete

channel is characterized by the matrix of transitional

probabilities Pij = P(zjlsi)" the probability that the

quantizer selects output z. given that signal vector s. was

transmitted.

The signal vectors received from the transmission

medium convey a degree of information about the transmitted

vector, depending on the physical characteristics of the

medium, most importantly, the signal-to-noise ratio. The

quantizer is included as a practical necessity but does not

enhance the information from the channel, and in fact loses

information. Clearly, the finer the quantization, the less

loss of information. It has been well-argued, that two

important parameters which affect the performance of any

code using the outputs from the channel are the channel

capacity, C, and the random coding bound R 0 [23,24]. Both

of these quantities reflect the amount of information

available to the decoder. The channel capacity is a

concept invented by Shannon [22] and is an absolute limit

on the rate at which information can be sent through the

channel. The random coding bound is an information rate,

derived from the probability of error averaged over all

codes which can be supported on the channel [25]. It is

impossible that any communication system could ever exceed

the channel capacity, and it is generally not practical to

43

build a system which even meets the channel capacity. The

random coding bound, being a statistically expected

performance rate, is a more practical parameter than

channel capacity. It has been shown [23,25] that the

expected attainable error probability of codes on a channel

is related exponentially to the block length of the code,

and R 0 as follows:

Pe < CR2-NR0 (2.1)

provided that R 0 > R. Here, N is the block length of the

code, R is the number of data bits per symbol, and CR is an

empirically determined constant. Performance at the rate

indicated by R0 has never been attained, since to do so

would require large block lengths, and the use of soft

decisions. To date, block codes use large block lengths

but not soft decisions, whereas convolutional codes use

soft decisions but have short block lengths.

For a continuous channel, the channel capacity and the

random coding bound are defined in terms of the probability

density functions of the channel. For the discrete

channel, with a finite set of inputs {si}, and a finite set

of outputs {zj}, R 0 and C are calculated from the source

probabilities P(s i) and the transitional probabilities

P(zjls i) as follows:

44

C = - E P(zJ)l°g2[P(zJ)]

J

+ E P(si) E P(zj Js i)log 2 [P(zj fs i)]

i j

(2.2)

R0 = - log 2 3_' P(si) QP(zjJsi)
(2.3)

where the source probabilities P(s i) are chosen to maximize

C and R 0. The derivation of R0 is due to Gallager [25].

Nearly all channels of practical interest possess symmetry

such that C and R 0 are maximized when the source symbols

1

all have equal probabilities, that is P(s i) = _, for all i,

where M is the number of source symbols. In this case:

C __ - _ log2 [P(zj)]
J

1

+ M ,_ _. P(zjlsi)log2[P(zjlsi)]
1 j

(2.4)

{ E}R0= - log2 4P(zjlsi}
3

(2.5)

If the channel has symmetry with respect to the

relationships between inputs and outputs, that is, if the

sets of transitional probabilities {P(zjlsa) } and

45

{P(zjlsb)] are different permutations of the same set for

any inputs s a and Sb, as is the case with the phase-only

and I,Q quantization schemes discussed here, then

E P (zj Is i) iog2 [P(zjls i)] does not depend on i, in which

J

case the calculation for the channel capacity further

simplifies to:

C = - E P(zj)l°g2[P(zj)]

J

+ E P(zj Is 0)log 2[P(zj Is 0)]

J

(2.6)

The channel capacity and the random coding bound are

measures of the information available to the decoder after

quantizing. This will inevitably be less than before

quantizing, however, as the quantizer is a practical

necessity, quantizers are included in the system and

designed to optimize these parameters.

2.3 Phase-Only Quantization

A TCM system can be made to work reasonably well with

phase information only. While phase and magnitude both

contribute to maximum likelihood decisions, phase-only

quantization may be of interest in the case of non-linear

46

channels, or the case of relaxed requirements of automatic

gain control. Also, phase-only quantization is an

effective way to use a relatively small number of

quantization regions, compared to I&Q quantization.

Studies of phase-only quantization have been performed at

NMSU since 1988 [8,9,10]. In these studies, the quantizing

operation was modelled by defining a finite set of

quantization points analogous to quantization levels in

one-dimensional quantization. The receiver then selects

the quantization point nearest the received signal vector,

and the decoder calculates Euclidean metrics with respect

to the quantization point, continuing the decoding process

just as though the quantization point were the received

vector. In this model, phase-only quantization is

represented by locating the quantization points at even

intervals on a circle of radius E_s , as illustrated in

Figures 2.1a and 2.1b, for the 24-sector phase-only

quantization. In Figure 2.1a, 8 of the 24 quantization

points coincide with the 8 signal vectors, whereas in

Figure 2.1b, the quantization points are offset from the

signal vectors. Because the quantization points lie on a

circle, the term circular quantization was used. The rule

of selecting the nearest quantization point generates the

decision regions shown in Figure 2.1.

47

$2
0

Z7 Z6 Z5/"_'-_
Z8 • • •, Z4 /_,_
• _ , • /_. __

S3,Z9 % / / //_ sl'Z3

zlee_ / / ,Y • z2

Zl1" _l'/ OZ1

S4,Z12 == /i_ _= SO,ZO
/ I _

/1\

Z16- • 6 • --Z20
217 Z19

(A)

$6
Z18 Z7 Z6 $2

Z8 O °

Z9 O 30

(B) ZIO0

Zll •

DECISION

BOUNDARIES

I

Z5 / _A_'_P_

o,_, _ _ o_c_szoN
/ /oZ3 BOUNDARIES

I I .j-,_ J-

/ it/ OZ2

,// • _i
_/" lZO

$4 _ _ SO

Z13 • • Z22

Z14 • • Z21

• S7

Sz :z:z SVO-•
_18 Z19

Figure 2.1. 8-PSK 24-sector phase quantization.

The quantization point model is extremely practical

(simulations at NMSU demonstrated the performance of TCM

systems using this model) but does treat the selection of

optimal decision regions, and the optimization of metrics

in great detail. Before further discussion, it should be

pointed out that the gains to be obtained by fine-tuning

48

of decision regions and metrics are extremely small (which

accounts for the success of the early NMSU simulations),

and will most likely be eliminated when the metrics are

quantized in a discrete decoder. The theoretically correct

metric to use, for any set of decision regions, is the log-

likelihood metric, to be discussed in Section 2.6. Once,

metrics other than Euclidean distance are used, the

location of the quantization points becomes less

meaningful, and the quantizer is modelled merely as a set

of decision regions. It then remains to discuss the

optimal configuration of the decision regions. The notion

of quantization points retains its utility, as it treats

quantization as a question of precision of numerical

quantities used in the algorithm, an issue which must be

faced in hardware design anyway.

In 1990, Parsons and Wilson [26], using the term polar

quantization, published a paper discussing the design of

phase-only quantizers, for M-ary PSK with M=4,8, and 16,

using quantizers of M, 2M and 4M zones. Their paper

presents the design of phase-only quantizers which optimize

R0 by satisfying Lee's optimality criterion [27], and

concludes that this condition is met (for the cases

discussed) by a quantizer in which the signal vectors lie

on boundaries of decision regions as shown in Figure 2.2b,

49

as opposed to one in which the signal vectors bisect

decision regions as shown in Figure 2.2a. Parsons and

Wilson derive their conclusion for 16-sector 8-PSK and then

suggest that the same should also be true for 32-sector 8-

PSK.

,, !}i ,,_
"'-_, tli,._.'_,_

.'///I', __- . _ li .' _
.-'/.",'1". ',._-,. ",_ ',1 ," _%
;,' i It "'," -... \',,/,"/:.:-,-

''' ---.\',/,'/.--' _
(A) ,_ _ - - j_

I _ I . # %

_ % I / I # -% I

_,, ,t, ,,j%
". _ Ill ,7-" _

"._. I/' ,_.'- _

S d %%.

Figure 2.2. 8-PSK 16-sector phase quantization.

5O

The early quantization studies at NMSU did not

approach the optimization of quantization zones but rather

looked at decoder bit error rate performance as a function

of fineness of quantization (16-sector, 24-sector, 32-

sector). Because these studies used the configurations of

Figures 2.1a and 2.2a, i c is in our interest to numerically

evaluate R0 for the various configurations, using equations

(2.24), and (2.5). The results are shown in Figure 2.3.

Although only three curves are apparent at first glance,

there are actually six curves: R 0 for 16, 24 and 32-sector

quantization, for both the case where signal vectors lie on

the decision boundaries and the case in which they bisect

the decision regions. As can be seen, whether the signal

vectors lie on the boundaries of decision regions or in the

centers of decision regions makes very little difference

for 16-sector quantized 8-PSK, and essentially no

difference for 24-sector and 32-sector quantized 8 PSK. To

gain further insight into this issue, we shall look more

closely at Parsons and Wilson's work [26], and look closely

at what it means to satisfy Lee's optimization criterion.

51

2.8

2.6

2.4

2.2
2.0

1.8

1.6'

RO FOR PHASE
QUANTIZED 8-PSK

32,24 L

1.4
4 6 8 10 12

Es/NO (dB)

Figure 2.3. Random coding bound for phase quantized 8-PSK.

52

Lee's optimization criterion statesthat if p is a

point on the boundary between two decision regions D a and

Db of an optimal quantizer then:

M-I[1 M-IZ 4P (bli)0 4P(blm) i=0

1 M-I]_P(afi) f(plm) = 0 (2.7)
4P(aim) i=0

where f(xlm) is the probability density function of the

received vector given that signal m was transmitted, P(alm)

is the probability that the quantizer will select Da, given

that m was transmitted, and P(bim) is the probability that

the quantizer will select Db, given that m was transmitted.

This meaning of Lee's criterion becomes more apparent when

the equation is rewritten as

M-l[l M-I]m_ _ 4P (aii) f(plm)0 _P(alm) i=0

M_I[i M_I]= _ _. 4P(bli) f(plm)0 _P (b Im) i=0

(2.8)

The term on the left hand side represents the incremental

contribution of the point p to R 0 if Q is included in Da,

the term on the right represents the incremental

53

contribution if p is included in D b. If the two are equal

(as stated by Lee's criterion) then it is clear that p

belongs on the boundary between D a and D b. If the term on

the left side were greater (not fulfilling Lee's criterion)

it would mean that R 0 could be increased by adjusting the

boundary to include p within Da, and likewise, if the term

on the right were greater, it would mean that R 0 could be

increased by including p in Db. We can see then, that

Lee's criterion is analogous to the condition that a single

variable function is maximized at a point of zero

derivative, and therefore constitutes a local, not a global

maximizer of the R 0 function, a fact which Parson's and

Wilson acknowledge. Thus we may interpret Lee's criterion

as follows: If a set of decision boundaries is drawn, and

Lee's Criterion is satisfied, then incrementally adjusting

the boundaries will not increase R 0, but if Lee's criterion

is not satisfied, then R 0 can be increased (or decreased)

by incrementally adjusting the boundaries. Lee's criterion

does not guarantee that R 0 could not be higher for some

completely different configuration of quantizer decision

regions.

Parsons and Wilson [26] acknowledge that their work

proves the configuration of Figure 2.2b to be a local

maximizer of R 0, not necessarily a global maximizer. In

fact they state,

54

"While a proof of global optimality seems

difficult, we conjecture that the stated

design is optimal, arguing as Lee did for

the optimality of the J = M [J is the number

of decision regions] design. Demonstration

that no other design with J=2M satisfies

[Lee's condition] would confirm this of

course [p1513]."

Furthermore, Parsons and Wilson [26] do not attempt to show

that Lee's condition is met for any configuration of 32-

sector 8-PSK, (in fact, they state that phase-only

quantization for J > 2M does not meet Lee's condition) and

they do not discuss 24-sector 8-PSK. For 16-sector 8-PSK,

however, Parsons and Wilson [26] have stated that the

configuration of Figure 2.2b satisfies Lee's criterion,

whereas the configuration of 2a does not, and thus conclude

that it is better that the signal vectors lie on boundaries

of decision regions, rather than in centers of decision

regions.

We shall now examine 16-sector 8-PSK more closely.

The configuration of Figure 2.2b satisfies Lee's criterion,

therefore adjusting the decision boundaries will not

improve R 0. The configuration of Figure 2.2a does not

satisfy Lee's criterion, and therefore its value of R0,

55

which is already close to that of Figure 2.2a, can be

improved by adjusting the decision boundaries, specifically

by varying the value of _, as shown in Figure 2.2c. In

this configuration the 8 sectors which encompass a signal

vector have span of _, the 8 which do not, have span of _ -

_. The optimal value of _ depends on the signal-to-noise

ratio; however, by selecting an appropriate value of _, it

is possible to make R 0 for the configuration of Figure 2.2c

exceed R 0 for the configuration of Figure 2.2b. Note that

for _ = 0, the configuration degenerates to hard decision

8-PSK, whereas for _ = _, the configuration of Figure 2.2c

K

is identical to that of Figure 2.2a. For the case of _ =

the configuration degenerates to a configuration of little

practical value, 8 decision regions, with the decision

boundaries coincident with the 8 signal vectors. With _ =

_, the channel capacity (and likewise, the random coding

bound) of the configuration can never be more than 2 bits

per symbol, at any signal-to-noise ratio. For hard

decision 8-PSK, or reasonable values of _, the capacity can

approach 3 bits per symbol at sufficiently high SNR's.

Figure 2.4 shows R0 for the configuration of Figure 2.2c as

Es

a function of _ for NO - 9, I0, and lldB. As can be seen,

can be selected to optimize R 0 at the expected signal-to-

noise ratio. Figure 2.5 shows R0 for the three

56

configurations of 16-sector 8 PSK shown in Figure 2.2.

Es

Here, _ is chosen to optimize R 0 at NO - 10dB. Note that

if Figure 2.2c is optimized, the difference between 2c and

either 2a or 2b, is greater than the difference between 2a

and 2b.

2.5 I I I I I I I

2.4

_ 2.3

m_ 2.2

_0 2.1
0

O_ 2.0

n"< 1.9

1.8

0 _/16 _:/8 3_16

Figure 2.4. Random coding bound of Figure 2.2c.

./I;/4

57

o

Z
D
O

<9
Z

n
O
O

O
r_
z
<

2.6

2.5

2.4

2.3

2.2

2.1

2.0

I I I I I

left to right:
configuration of figures
2.2c,2.2b and 2.2a

I I I I I

9 10 11 12

Es/NO

Figure 2.5. Random coding bound of 16-sector 8-PSK.

For 16-sector 8-PSK, the numerical differences in R 0

involved in the previous arguments are in fact very small.

For channel capacity, the results are similar, as shown in

Figures 2.6 and 2.7. Note, however that the channel

capacity and the random coding bound are not necessarily

optimized at the same value of #. As the number of

quantization regions is increased, the exact placement of

the quantization zones becomes less critical in its effect

on the performance of actual systems. For 24-sector 8-PSK,

the performance of a 4-state TCM Ungerboeck code using the

58

decision region configurations of Figures 2.1a and 2.1b, is

compared in Figure 2.8. This data was obtained from early

simulations using the quantization point model, and

Euclidean Metrics.

2.8

2.7--

2.6--
O

-_" 2.5-
O
<

< 2.4-0
..d
UJ
Z
z 2.3-
<
-1-
0

2.2-

2.1 --

2°0

I I I I I I I

Es/N0=I ldB

Es/N0=I 0dB

Es/N0=9dB

I I I I I

0 /r.Jl 6 /rJ8 3/_/16 rd4

Figure 2.6. Channel capacity of constellation of Figure

2.2c.

59

0

I

0

._1
Iii
Z
Z
<
I
0

3.0

2.8

2.6

2.4

2.2

2.0

1.8

I I I I

left to right
configuration of
figures 2.2c,2.2b,
&2.2a

I I I I I

6 7 8 9 10 11 12

Es/NO (dB)

Figure 2.7. Channel capacity for 16-sector 8-PSK.

6O

10 -I I I I I I I I i

LU
I--
<
n"

n-
O
13:
_C
UJ

m

10 -2

10 -3

10 -4

10 -5

configuration
of figure 2.1a

configuration
of figure 2.1b

I I I I I I I

6 7 8 9 10

Es/NO (dB)

Figure 2.8. Performance of 24-sector 8-PSK, 4-state TCM.

The performance of 16-, 24-, and 32-sector 8-PSK, with a 4-

state Ungerboeck code (previously published data [i0]) is

shown here in Figure 2.9. Also shown in Figure 2.9 is the

performance of 8-PSK with unquantized phase and radius

hardlimited to _s. These simulations also used the

Euclidean metric. For comparison, the performance of

unquantized 8-PSK is also shown. The unquantized phase-

6]

10 -1
I I I i I I i

LEFT TO RIGHT

UNQUANTIZED, PHASE ONLY,
32, 24, &16 SECTOR PHASE

W

<
n-

n"
O
n"
rr
LM
F--
rn

10 -2 -

10 -5 I I I I I I I
6 7 8 9 10

Es/N0 (dg)

Figure 2.9. Performance of phase quantized 8PSK 4-state

TCM.

only curve represents the limit on the performance of

phase-only quantization, although a very slight improvement

could be obtained by using an optimal metric. This

reflects the fact that phase-only quantization, however

fine, is limited by the loss of magnitude information.

This limitation led to the decision to use I&Q quantization

in the high-speed architecture study, as well as the

62

multimode study [18]. However, phase-only quantization

turned out to be extremely useful in the NMSU

implementation of pragmatic TCM [28,29], using an existing

(off the shelf) binary Viterbi decoder. Pragmatic TCM is

discussed in Section 3.2.

2.4 I&Q Quantization

I&Q quantization, that is, individual quantization of

the in-phase and quadrature components of the received

vector has the important advantage of approaching

unquantized performance for sufficiently fine quantization,

which is not the case for phase-only quantization.

However, a disadvantage is that a much larger number of

quantization points must be used, which complicates metric

calculation. Also, in order for the magnitude information

to be meaningful, the receiver must maintain good automatic

gain control. Finally, I&Q quantization limits the range

of the received signal vector, so the quantizer must be

designed with respect to the expected magnitude of the

received vector.

63

I
!
I

I
I

_mu r

I I
I I

DECISION REGIONS

2, Q , Sl, ,

I I I - --b----'

I I

,r, 7--r--r so
I I # I I

I
I I

I I
I

--- r--r
54 ' '

I I I
- --r - -r

i i
i i

- - -r - -r
i i
i i

. (

I I
I

Figure 2010. I&Q quantization.

To model I&Q quantization, we first assume an 8-PSK

constellation as shown in Figure 2.10. This constellation

is rotated by 22.5 degrees from that of Figure I.i0. The

rotation does not affect the algebraic or analytical

properties of the code, but has certain advantages in

hardware implementation. We let the I and Q components

range from -i to I, and then let the signal vectors have

length _. We then quantize rectangularly, and

symmetrically, so that an equal number of quantization

points lie in each quadrant. Because the I and Q

64

components will be represented as binary numbers in

hardware, it is desirable to let the number of quantization

values (for I or Q) be a power of 2. From simulations at

NMSU [28,29] it is known that 8-1evel (3-bit) I and Q

quantization seriously degrades the performance of

pragmatic TCM, whereas the performance of a system using 8-

bit I&Q is close to that of an unquantized system.

Therefore, for the TCM decoder architecture, we expect to

represent the I and Q components of the received vector

using now fewer than 4 bits, but no more than eight bits.

For I and Q quantization, an important parameter is

the length of the received vector, relative to the

boundaries of the rectangular quantization region in the

receiver space, denoted as _ in Figure 2.10. As is the

case for phase-only quantizers, I&Q quantizers should be

designed to maximize the random coding bound, R 0. For 4-

bit I and Q, R 0 as a function of _ is shown in Figure 2.11.

R0 as a function of signal-to-noise ratio is shown in

Es

Figure 2.12. At NO - i0 dB, R 0 appears to be maximized at

approximately 5=1.0 and is not very sensitive to _. The

insensitivity to _ may be due to the fact that at this

operating point, most of the probability density of the

received signal vector is concentrated within the small

number of decision regions adjacent to the source signal

vectors, while the remaining decision regions are very

65

O
tr-

Z
D
O
a3

(.9
Z
O
0
o

0
O
Z
<
er

2.6

2.5 --

2,4 --

2.3-

2.2-

2.1 -

2.0-

1.9

I I I

Es/N0=I 1d@

Es/N0=I 0dB

Es/N 0= 10dB

I I I

0 0.5 1 1.5

(Z

2

Figure 2.11. Random coding bound for 4-bit I&Q

quantization.

66

a
z

O
m

z

r_
0
0

0
a
Z

n"

I I I

LEFT TO RIGHT

o_= 1.0,0.5,1.5

I I

, I I I I I

6 7 8 9 I0 II 12

Es/N0

Figure 2.12. Random coding bound for 4-bit I&Q

quantization.

under-utilized. This implies that some improvement in

performance might be obtainable by the use of non-uniform

quantization, with a greater number of decision regions

concentrated near the source signal vectors. This,

however, is similar to the issue of fine-tuning the

decision regions for phase-only quantization, in that the

gains to be obtained are probably not worth the added

hardware complexity. Fine-tuning of quantization regions

can do nothing more than close the gap between quantized

and unquantized performance, which for 4-bit quantized I

and Q is approximately 0.2dB. Furthermore, uniform

67

quantization has the advantage of allowir, g a standard

analog-to-digital converter to be used in the demodulator.

2.5 The Log-Likelihood Function

Another issue raised by the quantization of the

received signal vector is the calculation of the metrics to

be used by the Viterbi decoder. The objective of a good

decoder is to select the sequence of encoder output signal

vectors which is most likely to be correct, given the

sequence of received noisy vectors, that is, to select the

encoder output sequence Sm which maximizes P(SmlZ) . If all

of the sequences have equal a priori probabilities, and the

channel is continuous, then it is equivalent to select the

maximum likelihood sequence, that is the sequence Sm which

maximizes p(ZlSm) . Here, P(SmlZ) denotes the conditioned

probability of Sm given Z, while p(ZlSm) denotes the

conditioned probability density function of Z given Sm. If

the channel is memoryless (that is no signalling interval

is affected by any other signalling interval) then

L

P(ZISm) = H p(zilsmi)

i=l

(2.9)

where L is the length of the sequence and z i and Smi are

the individual elements of the sequences Z and Sm

68

respectively. It is equivalent, and computationally more

efficient to use log-likelihood functions which may be

added, rather than probability density functions, which

must be multiplied. Then the decoder would select Sm to

maximize

-in [p (Z iSm)]

L

i=l

-in [p(zil Smi)] • (2.10)

If the noise is additive white Gaussian then

i 11 1p(zilSmi) - exp - Izi-smil 2
2zO 2 2G 2

(2.11)

where izi-smil is the Euclidean distance between zi and

Smi. Taking the log-likelihood function leads to the use

of Euclidean distance squared as the metric in Viterbi

decoding of TCM on the memoryless additive white Gaussian

channel.

If the channel is discrete, as it becomes when the

quantizer is added to the system, and all Sm have equal a

priori probabilities, then maximizing P(SmlZ) is equivalent

to maximizing P(Z Sm) • Here Z denotes the sequence of

discrete quantizer outputs, rather than the sequence of

continuous signal vectors. The decoder would then select

Sm to maximize

69

L

P(ZISm) = _ P(zilsmi)

i=l

(2.12)

where the probabilities P(zilsmi) are the transitional

probabilities of the channel. As in the case of the

continuous channel, it is preferable to use log-likelihood

functions, which may be added, rather than probabilities,

which must be multiplied, so the decoder is built to select

the sequence S which maximizes
m

IJ

-In[P(ZISm)] = _ -in[P(zilsmi)].

i=l

(2.13)

This condition is equivalently fulfilled by using metrics

of the form a + b in[P(zilsmi)] where a and b are arbitrary

constants which may be selected to allow the range of

metrics to best be represented by a particular hardware

design.

2.6 Calculation of Probabilities and Related

Parameters

For the discrete channel formed when any form of

quantizer is incorporated into a TCM system, the channel

capacity, the random coding bound, and the optimal set of

metrics must be calculated from the transitional

7O

i I

X

transmitted vector
origin of origin of
signal variables of
constellation integration

Figure 2.13. Region of integration for sector probability.

probabilities. The transitional probabilities are found by

integrating the probability density function of the

received vector, given the transmitted vector, over each

decision region. For phase-only quantization, the decision

regions are angular regions as shown in Figures 2.1a and

2.1b, and also in figures 2.2a, 2.2b, and 2.2c. To find

the transitional probabilities for phase-only quantization

we first consider the problem of finding the probability,

P_, that the phase of the received signal vector will be

removed from the phase of the transmitted signal vector by

no more than the angle _, as shown in Figure 2.13. This

may be found by integrating the two dimensional Gaussian

distribution function over the region S_ giving:

71

P_ = exp -2Z02 202

s_

[(x-1)2+y2] } dx dy
(2.14)

where 02 - NO (2.15)
2E s

The classical approach to this problem is to convert

from rectangular to polar coordinates giving:

0H0o _ }= ex - [R 2 - 2R cos0 + 1] R dR d8
2_O 2 202

= f'0_ f(010) d0
(2.16)

where f(010) denotes the phase density function, given that

a phase of 0 was transmitted. Integrating over R gives:

- ex -
2_

{sin20}cos0I]+ -- exp - -- Q- -- (2.17)
202 o

fx1 oo

where Q(x) - _ exp 202

(2.18)

Finding the phase sector probability by this method

requires that a double integration be performed

72

numerically, since no closed form solution for the Q()

integral exists.

An alternative method for calculating P#, which

requires only that single integrals be performed

numerically is obtained by applying the change of

variables:

1

R = [(x-l)2 + y2] 2 (2.19)

0:arctan (2.20)

This gives the following integral:

P_ = -- R exp - R 2 dR dO2z_2 2_2

s¢

(2.21)

In this expression, the integral with respect to R can be

solved in closed form. The limits on R are found as a

f_inction of 0:

sin 0] -I
0 _< R -< --- + cos 0

htan
for 0 _< 0 < Z - _

0 _< R _< oo for _ - _ < 0 _<

73

The integral is then broken into two parts and solved

giving:

1 i__ _ exp {P¢=2- + cosS] -2 } d@ (2.22)

where the remaining single integral is then solved

numerically. The probability that the received signal

vector will have phase between _0 and _i with respect to

the transmitted vector may be found from

P¢0,¢1 = P[(_O < ¢ < ¢1] = P¢I - P_)O"
(2.23)

One problem with this form is that precision problems can

arise due to the fact that the difference P_I - P_0 can be

quite small relative to P#I and P_0. This problem may be

aleviated by rewriting equation (2.23) in the form:

1 exp 1 "-- " "|sinS+cose|-2 [
P4_K),(_I = 2----_ _ {- 2;2

- exp {- 2_ 2 Lia_

74

if {i+ -- exp -
2_ 2G 2 sine]-2}

+cosO dO.

_tan(_O

(2.24)

This form requires more computational time, but yields

greater precision when numerical integration methods are

applied. A side benefit of equation (2.22) is that it

leads directly to an alternative form for the Q() function

as follows:

= i r_/2 ex - d@
i - 2Pz/2 _ JO 2@2cos 2

(2.25)

1
Substituting x for --gives:

Q(x) - 1 /2exp - _ d@
z

(2.26)

This form of the integral has finite limits, unlike the

standard form.

Because the system is symmetrical, that is, because

the probability density function for the received phase

given any transmited phase, f(ejlei), is equal to f(Oj-

@ilo), formula (2.24) may be used to calculate all of the

transitional probabilities required in the analysis of any

75

phase-only quantization schemu. These may then be used to

calculate R0, C, or log likelihood metrics. The R0 and C

values used in the previous section were found by writing a

"C" computer program to calculate the phase transition

probabilities by numerical integration of equation (2.24).

These were stored in a table and used to calculate C and R 0

from equations (2.6) and (2.5) respectively.

The calculation of the transitional probabilities for

I and Q quantization is easier than that for phase-only

quantization due to the fact that the I and Q components

are independent. That is, the probability that the

received sigal vector (Ir,Qr) will fall within the

rectangular region bounded by I0, If, Q0, Q1 is given by

the product of the probabilities P[I 0 < Ir < If] and P[Q0 <

Qr < QI], both of which are found from single integrals:

P(zjlsi) -

II Q1

21o2f exp(-22] dxf exp(-2o-v 22)dy
IO QO

(2.27)

For the case of 8-PSK with four bit I&Q quantization, due

to the symmetry of the constellation, the calculation of

the transitional probabilities requires 32 integrals to be

evaluated numerically.

76

2.7 I and Q Quantization for the TCM Decoder

The preceding analysis using the channel capacity and

the random coding bound show that once a sufficiently fine

quantization scheme is specified, the exact placement of

the decision regions (within reason) can be expected to

have little impact on the actual performance of the overall

system. For metric quantization, there is no analytical

tool which is what channel capacity and random coding bound

are for signal space quantization. For the problem at

hand, that is, building a machine to decode the 16-state

Ungerboeck code for rate 2/3 8-PSK TCM, the desired

precision of I, Q, and metrics was determined by computer

simulations using BOSS. It was decided that the decoder

design presented here should perform at least as well as

the pragmatic standard, at a bit error rate of 10 -5 . The

simulations showed that 4-bit quantization of I and Q would

not accomplish this, even for unquantizad metrics. It was

determined that 5-bit quantization of I and Q, with 7-bit

metrics would be essentially equivalent to the performance

of unquantized pragmatic TCM. For that reason, those

parameters were used for the design.

77

3. PREVIOUS TCM STUDIES

The high-speed codec design presented in this paper is

grounded in experience gained through prior research

projects in Trellis-Coded Modulation, including

simulations, analytical studies, and hardware projects.

These include BOSS simulations of Ungerboeck codes of 4, 8,

16, 64, and 1024 states; BOSS simulations and hardware

construction of pragmatic TCM decoders; an analytical study

of a multimode codec; and work in bit error spectrum

generation, an analytical technique for estimating the

performance of various trellis codes.

Since the time that Ungerboeck pioneered TCM in 1982,

the performance of trellis codes has been predicted on the

basis of the asymptotic coding gain, the probability of the

most likely (minimum distance) error event, as described in

Chapter I. In searching for the best codes possible at

various constraint lengths, and various signal

constellations, Ungerboeck used the minimum distance error

event as the criterion of selection. The asymptotic coding

gain, ACG is the increase in the minimum distance of a

coded system, as compared to an uncoded system carrying the

same amount of information per symbol. In the case of rate

2/3 8-PSK, the baseline for comparison is uncoded QPSK, as

both carry two bits per symbol. From the QPSK signal

78

.

I

\ _ 2Es\
\

\

'_0

3

Figure 3.1. QPSK signal constellation.

constellation, Figure 3.1, it can be seen that the minimum

distance between signal vectors is 42E s. For the simple

4-state Ungerboeck code, the minimum distance error event

is the distance between symbols associated with parallel

branches of the trellis, 2_s or _E s. Thus the minimum

distance between error events for coded 8-PSK represents

twice the energy of the minimum distance between uncoded

QPSK vectors, and coded 8-PSK is said to have a minimum

distance coding gain of 3 dB. The asymptotic coding gain

is based not only on the minimum distance but the number of

error events at that distance. For 4-state rate 2/3 8-PSK,

this turns out to be approximately 3.2 dB.

Asymptotic coding gain is not realized in the actual

performance of the decoder, because error events other than

79

the 1,Linimum distance error event contribute significantly

to the probability of error. As an example, the true coding

gain of the 4-state code, measured at useful threshold bit

error rates, falls short of the 3.2 dB asymptotic coding

gain, being closer to 1.5 dB, at a bit error rate of 10 -5 .

Non-minimum distance error events usually have very small

probabilities but very large numbers, a fact which causes

the true coding gain of convolutional codes to be less than

the asymptotic gain, and makes analytical calculation of

error probabilities of convolutional codes very difficult.

One approach to calculating the probability of error

is the union bound. Union bounds, as they apply to binary

codes are discussed by Clark and Cain [16], and essentially

the same principles apply to binary codes. The union bound

approximates the total probability of error as the sum of

the probabilities of the individual error events. The

union bound will generally overestimate the probability of

error, because the probabilities used are the probabilities

of pairwise error events, which are not necessarily

disjoint. Also, the union bound is not strictly practical,

due to the fact that a trellis code possesses an infinite

nu_er of error events. For this reason, a union bound

calculation is usually based only on the error events which

contribute significantly to the overall probability of

error. However, the number of error events will still be

8O

quite large, and the problem of finding them is non-

trivial.

3.1 BOSS Simulations At NMSU

Due to the inadequacy of the asymptotic error rate

prediction, and the difficulty of analytically calculating

the error probabilities of trellis codes, simulations are

employed as a means of evaluating the performance of

trellis codes. Simulations at NMSU have been performed to

determine the performance of phase quantized TCM, as

discussed in Chapter 2, to determine the performance of

codes ranging from 4 to 1024 states for rate 2/3 8-PSK, and

to evaluate the performance of pragmatic TCM, using phase

quantization as well as quantized I and Q. For rate 2/3 8-

PSK Ungerboeck codes of 4, 8, 16 and 64 states were

simulated. A 1024-state code was found, using the bit error

spectrum technique, then simulated using BOSS.

BOSS stands for "Block Oriented Systems Simulator".

BOSS is a commercially available software package which

allows simulations of systems to be constructed from

previously defined modules, which may be supplied with the

system or created by the user. The modules are implemented

as FORTRAN subroutines, and the inputs and outputs of the

modules correspond to variable types in the FORTRAN

81

language. Included are vector signals, analogous to

arrays, which allow multiple signals of the same type to be

"one-lined" on the block diagram, which greatly clarifies

the diagram for a system which requires many signals.

Generally, modules to perform simpler functions are

independently tested and verified, and then used to build

up more complex systems. Modules which are defined purely

in FORTRAN code, and not constructed out of lower level

modules are referred to as primitives. The authors of the

BOSS software prefer that users not create their own

primitives, but allow for the fact that it may sometimes be

necessary. Also, because every BOSS module is effectively

a call to a FORTRAN subroutine, which has an overhead in

CPU time, the use of specially defined primitives can

result in faster simulations. A simulation of a 64-state

Ungerboeck decoder built entirely out of basic blocks

required nearly a week to run one million symbols, while

the equivalent version using in-house primitives required

less than 24 hours.

The earlier BOSS simulations were designed to

implement specific codes. Later a more general approach

was used, implementing the metric calculator, add-compare-

select function, and path memory function as in-house BOSS

primitives. This means that modules representing these

functions appear on the top level block diagram of the BOSS

82

simulation, but the functions are implemented in FORTRAN

code. In these later simulations, a flexible approach was

adopted in which the code is defined in terms of two

tables: the next state table, which gives the next state of

the convolutional encoder as a function of current state

and current input, and the next symbol table, which gives

an output code symbol to correspond to every state

transition represented by in the next state table. The

information given by these two tables is sufficient to

uniquely define the code. Because the decision unit of a

Viterbi decoder looks backwards through the trellis, it is

often convenient, and not difficult to convert the next

state and next symbol tables into previous state and

previous symbol tables.

As an example of a typical Boss simulation for TCM,

the top level block diagram for the 1024-state simulation

is shown in Figure 3.2. The module 8PSK 1024 STATE DATA

generates the test data for the simulation. This module

employes a 1024-state convolutional encoder of the kind

shown in Figure 3.19, to select 8PSK signal vectors.

Gaussian vectors are added to the signal vectors to

simulate the effect of noise. The module INTEGER METRICS

8PSK generates metrics for all 8 of the 8-PSK signal

vectors. In order to reduce the computing time required

83

I I-I

t

i

U
B

4J

I

c,,1
o
c--i

0

0
-..-I
.IJ

,---I

t/)
t/3
0
I:n

C_l

G3

84

for the simulation, integer metrics are used rathe_ than

floating point metrics. However, the integer metrics are

scaled in such a way that the resolution of the metrics

should not be a performance issue. Specifically, the

metrics derived from the geometry of the signal set, which

range from 0 to'4 (relative to E s) are multiplied by 255,

then the nearest integer is taken.

The ACS UNIV module performs the add-compare-select

function, and is implemented as a primitive. This produces

lower simulation times than would be obtained by

constructing the ACS unit out of smaller modules. The

modules PREV SYM 1024"4/8 and PREV STATE UNIV produce

previous state and previous symbol tables for the 1024-

state code. These modules can be substituted by other

modules to allow the use of different TCM codes. These

modules use FORTRAN code to generate the tables, which is

done only once, at the beginning of the simulation.

The module PATH REGISTER UNIV is composed of repetitions

of a primitive module representing a path stage. The

number of repetitions, referred to as replications, gives

the decoder its trace-back depth, and is a selectable

parameter of the simulation. The module INIT STAGE 1024"4

provides the data to be fed into the first stage of the

path memory. This must correspond to the data which drives

the encoder to each state, in this case, the two least

85

significant bits of the binary representation of the state.

The data in the path register is represented as integers,

the module OCT TO BIN converts the integers to bits.

Finally, the data error counter compares the decoded data

to the original data, and compiles an error count.

The simulation results for rate 2/3 8-PSK codes are

shown in Figure 3.3. This shows the increase in coding

gain to be obtained by increasing the complexity of the

code. The 64-state Ungerboeck code achieves a coding gain

of 3.6 dB over uncoded, as compared with 3.2 dB for

pragmatic TCM, which is discussed in the next section. The

results of these simulations are presented at the 1991

NAECON conference [30].

86

-1

-2

Ill
I- -3
<
¢r
n-
O
n-
¢r
UJ

Q3

• - -4

O
.J

-5

-6

8-STATE

64-STATE

4-STATE ASYMPTOTIC

UNCODED 4-PSK

4-STATE

! ! I

6 7 8 9 10

Es/N0 (dB)

Figure 3.3. Simulation results for rate 2/3 8-PSK codes.

87

3.2 Pragmatic TCM

In 1988, Viterbi [7] introduced pragmatic TCM, briefly

discussed in Chapter i. Pragmatic TCM is so called because

it achieves a considerable simplification in hardware,

while suffering only a moderate loss in performance.

Pragmatic TCM uses the industry standard 64-state binary

convolutional encoder of Figure 1.14 in the TCM system of

Figure 1.9. The advantage of doing this lies in the

simplicity of the design, and the fact that the same

decoder can be used for a variety of modulation formats.

Because a reasonably powerful Viterbi decoder is a complex

piece of hardware, making one decoder work for a variety of

modulation formats is a considerable advantage. One of the

possibilities opened by pragmatic TCM is the implementation

of non-binary TCM, using a currently marketed Viterbi

decoder designed for a binary channel.

After the publication of the concept of pragmatic TCM,

the NMSU telemetry lab began work on the design of systems

to implement pragmatic TCM for rate 2/3 8-PSK. This was

accomplished using a currently available Viterbi decoder,

with surrounding circuitry to adapt the binary device to a

non-binary channel, as shown in Figure 3.4. While the

Viterbi decoder itself represents the most significant

investment in hardware, additional parts of the system, are

88

|

0
I-.

cot7
_-0

_AA
I

w !

_-oIZO
OZ
OWl

w

00 i-. n

¢v" ii1 a

>-ma

::oo_w
Z_-w

Z
0
cOO

o_g

0
l-
Ow
uJo'_

-if
u.I
N
...1

_g
az

121

_z0

n.-

i1)
4J

c_

a,.J

-,-I

89

also essential to 8-PSK operation. These are the received

signal quantizer, the soft decision logic, and the outboard

decision logic. The first NMSU experiment in pragmatic TCM

was used 24-sector phase quantization, as discussed in

Chapter 2. Earlier simulations in TCM established the

feasibility of phase-only quantization for use with 8-PSK

[8, 9, I0]. From these simulations, it was learned that

the performance of 16-sector quantization would be

inadequate, that the performance of 24-sector quantization

would be acceptable, and that 32-sector quantization would

result in only a slight improvement over 24-sector

quantization. For this system, the functioning of the

outboard decision is the same as it is in the 4-state

Ungerboeck code. The use of the decoder's soft decision

inputs in a manner appropriate to the phase quantized 8-PSK

signal constellation is crucial to the operation of the

system.

The first NMSU experiment in pragmatic TCM is shown in

Figure 3.4. In this experiment, a computer was used to

generate test vectors for the system. Random data is

encoded onto a sequence of 8PSK signal vectors in

accordance with the pragmatic coding standard. A Gaussian

noise vector is added to each signal vector, and then the

resulting vector is normalized and represented as a pair of

eight-bit numbers. The eight-bit numbers, representing the

I and Q components of the noisy vectors, leave the computer

90

and go to the phase encoder, which generates a five-bit

code representing one of 24 phase sectors as shown in

Figure 3.6. The five-bit phase code is fed to the soft

decision logic, which is explained in Section 3.2.2. The

Viterbi decoder recovers only the convolutionally encoded

data. Additional logic is necessary to recover the

outboard bit, the bit which bypassed the convolutional

encoder when the data was encoded. The selection of the

outboard bit is effectively a threshold decision between

two vectors. The ideal threshold to use depends on the

codebits which were modulated onto the signal in the first

place. For this reason, the decoded sequence must be

reencoded to obtain a maximum likelihood estimate of the

codebits. Because the Viterbi decoder introduces a delay

into the data, phase information required by the soft

decision logic must be delayed to match the decoding delay,

as shown in the drawing. The 24-sector phase encoder, the

soft decisions, and the outboard decisions are discussed in

the following sections.

3.2.1 The 24-sector Phase Quantizer

The 24-sector phase quantizer is illustrated in Figure

3.5. This circuit generates a 5-bit phase code indicating

which of 24 phase quantization points is nearest the

91

received signal vector. The design of the 24-sector phase

quantizer is based on three principles:

i) The received vector will be normalized prior to

phase sector determination.

2) When the received vector has constant magnitude and

varying phase, the component (I or Q) which has the least

magnitude is also the component which changes the most in

response to a phase change. This component is selected and

used to make the phase determination.

3) The use of the absolute value (or magnitude)

function on the I and Q components cuts down on the number

of comparators necessary to make a phase determination.

MIN(III, IQi) r_ COMPARE

I] >TH1

|VALUE I
__ABSOLUTE I L_COMPARE [-'

III<IQI |IVALUE

__ COMPARE
I-- /i<o I

Q._., |Q<_COMPARE]

Figure 3.5. 24-sector phase quantizer.

Cz

¢3

92

Figure 3.6. Each bit in the code has a specific meaning

with respect to the location of the vector, as indicated on

the diagram. Note that _4 and #3 specify the quadrant,

while the remaining 3 bits specify the location within the

quadrant. Using combinational logic, the phase bits are

used to generate the soft decisions for the Viterbi

decoder.

3.2.2 Soft Decision Adaptation

The standard Viterbi decoder chip will accept inputs in

either of two modes: hard decision, in which the receiver

makes a binary determination that the received codebit is

either a "0" or a "I" (with no consideration of the

relative likelihoods), or soft decision, in which the

receiver indicates, on some specified scale, the relative

likelihood that the received codebit is a zero or a one.

When Viterbi decoding is used with binary signaling, the

use of soft decisions can improve performance by as much as

2 dB over hard decisions [16]. Typically, the soft

decision is generated by the quantization of an antipodal

signal received in the presence of additive white Gaussian

noise, as shown in Figure 3.7. Usually, a scale of 0

through 7 (3-bit soft decision) would be used, although

decoders which use a scale of 0 through 15 (4-bit soft

94

decision) are currently available. The decoder uses the

soft decisions to calculate a branch metric to associate

with each combination of codebits resulting from a state

transition of the convolutional encoder. The branch metrics

are then used to determine the maximum likelihood sequence.

Ideally, the weight associated with the event that the

codebit is a i, given the received signal Rx, denoted

p(SI1) p(SlO)

3

IJ

I
2 1

-Es +Es

Figure 3.7. Soft decisions for binary channel

S

w(c=lIRx) , should be proportional to the negative of the

log of the probability that the codebit is a i,

log[P(c=iIRx)] . Likewise, w(c=01R x) should be proportional

to log[P(c=01Rx)]. For 3-bit soft decisions, this would

lead to:

95

w (c=0 iR x) :

log [p (C=01Rx)]_log [p (C=0 iRx=7)]]n.i.-7 log[P(c=01Rx=0)_log[P(c=0iRx=7)] (3.1)

w (c=l IR x) =

log [p (c=l iRx)]_log [p (c=l iRx=7)]]n.i.-7 log[P(c=llRx=0)_log[P(c=liRx=7)] (3.2)

Here n.i. denotes the nearest integer to the quantity in

brackets. Both of these conditions could be satisfied

simultaneously by a decoder which accepts two weights for

each codebit, one representing the strength of a i, the

other representing the strength of a zero. Soft decision

decoders commonly in use do not allow this, as they accept

one input representing the strength of a i, that is

w(c=llRx), while the weight attached to a zero is

implicitly w(c=01Rx) = 7 - w(c=llRx). While this

additional constraint precludes the exact simultaneous

solution of (3.1) and (3.2), it is known that the Viterbi

algorithm is robust, and relatively insensitive to the

exact selection of weights [16]. Therefore, the

manufacturers of Viterbi decoders resort to the simple

expedient of letting the soft decision represent the

coordinate of the received signal vector on an integer

scale of 0 to 7, that is w(c=lJRx) is simply Rx. This

96

technique is effective in that it achieves the expected

coding gain over hard decisions.

The preceding discussion pertains to soft decision

Viterbi decoders as they are used currently, that is on a

binary or quadrature channel. Assuming that the channel is

memoryless, codebits transmitted by binary signaling are

independent. When quadrature signaling is used, two

codebits are transmitted per signal, with each orthogonal

component of the two dimensional signal representing a

single codebit, so all codebits in quadrature signaling are

likewise independent. This means that the probabilities of

symbols, each consisting of a pair of codebits, are given

by P(clc0)=P(cl)P(c0) and log[p(clc0)] = log[P(Cl)] +

log[P(c0)]. Since the weights are based on logarithms of

probabilities, it is appropriate to let the weight

associated with a symbol be the sum of the weights

associated with the individual codebits.

Unlike binary or quadrature signaling, in 8-PSK

signaling it is not the case that the codebits are

independent. Therefore the optimal weight to assign to a

pair of codebits is not simply the sum of the codebit

weights. However, a decoder designed for use on a binary

channel will take the symbol weight to be the sum of the

weights given for a pair of code-bits. Therefore, in

adapting a binary decoder for use on an 8-PSK channel it is

97

necessary to assign the soft d_cision codebit weights not

only so that each individual codebit weight reflects the

likelihood of that particular codebit, but also so that the

sum of the weights assigned to a pair of codebits sums to

(7,7)

(7,5) 2 (5,7)__.
.7,o!72)0o I o o (_',n
()3,.. _ .,i(o,7)

(5,0) 0 _,,)/ 0(0,5)(2,0) 0 0(0,2)
(0,0) 4 -_ _.._ _ -

./IX ---u (o,o)
(o2)o / I\ 0(2,0)
(0,5)?/ I "w,o(5,o)
(O'7) bO _ _- 0__7(7,0)

27)_ u- .q_(7,2
(')(5,7) 6 (7,5))

(7,7)
(7,7)

(A)

(c)

(7,7)

(7,3)(7,_ 2
(7,0) 3 0

(4,0) 0 "_

(3,0) 0 _.
(O,O)4_a "

(0,3) 0 /

(oo o,-
(,) o

(3,7) 0,

(4,7)(_

(7,6) 2 (6,7)
._ (7,1)... 0 I 0 .-.(1,7)

' "% I f 0(0,6)
(1,o)o \I/ o(o,1)

(B) (0,0)4 _ .,,.v ,,._
m 1__ /1X, -- 0 (0,0)
,-,-,v / I \ Og,O)

(o,6)_J I "_ o(6,o)
(o,7) - _ .L ",

(I,77 0 _ 0 R7,7157'0)

(6,7)(7,7)(7,6)
(4,7)

0 _(3,7)

.,4'1 (0,7)

/- 0(0,4)

0(o,3)_0

\ o(4,o)
"_ 0(3,0)

(3 7(7,0)
0 "(7,3)
(7,4)

Figure 3.8. Soft decision assignments for 24-sector

pragmatic TCM,

98

an appropriate weight for the associated symbol, or as

nearly so as possible.

For the 24-sector 8-PSK pragmatic TCM system, soft

decision weights were assigned according to the following

principles:

I. As required by the decoder, the soft decision

weight indicates the relative likelihood of a zero or a

one, with a weight of zero indicating the greatest

likelihood of a binary zero, and a weight of seven

indicating the greatest likelihood of a binary one.

2. The soft decision assignments are made in a way

which reflects the symmetry of the signal constellation.

The constellations of Figure 3.8 all conform to these

principles, however, configuration (a) was empirically

found to be the best.

The soft decision assignments of Figure 3.8a result

from a least square solution to the problem of generating

log-likelihood symbol metrics from the soft decision

inputs. For brevity, let w(c0=0) be denoted w0, then

w(c0=l) may be written as 7 - w 0. Likewise, let W(Cl=0) be

written wl, and W(Cl=l) be written 7 - w I. In this case,

w 0 and w I correspond to the pair of weights given the soft

99

decision decoder. Vurthermore, let the four codebits be

denoted wOO , w01 , Wl0, Wll, for w(c0=0,Cl=0), w(c0=0,cl=l),

w(c0=!,Cl=0), and w(c0=l,cl=l), respectively. The decoder

then assumes that the correct symbol weights are given by:

wOO = w 0 + w 1

w01 = w 0 + (7 - w I)

Wl0 = (7-w0) + w 1

Wll = (7-w0) + (7-w I) = 14 - w 0 - w I

(3.3)

(3.4)

(3.5)

(3.6)

subject to 0 <_ w 0 <_ 7, 0 <_ w I <_ 7.

Clearly, it is not possible to generate weights which

are optimal, in the sense that they represent log-

likelihoods, and which also satisfy the constraint of the

above system of equations. The objective is to obtain a

set of weights which fit as closely as possible, in the

least squared error sense. Let wOO', w01', Wl0', and Wll'

be the optimal weights, as opposed to the weiQhts

calculated by the decoder from the soft decisions, using

equations (3.3) through (3.6). The optimal symbol metrics

are proportional to the logarithms of the probabilities and

also extend over the maximum range made possible by the

decoders soft decision mechanism. Clearly, the maximum

symbol metric is 14, obtained when both soft decision

100

inputs are equal to 7. Therefore, the weight of 14 should

correspond to the log of the smallest probability of code

symbol over all code symbols clc0 and quantizer outputs z.

The minimum soft decision is 0. This gives us:

Wclc0' =

14 -loq[p(clc0) Iz]-min[-loq[p(clc0)Iz]]
max [-log [p (clc0) Iz]]-min [-log [p (clc0) Iz]]]

(3.7)

where max and min are for all possible values of cl, cO and

z.

The system (3.3) through (3.6) may be optimized

separately for each quantizer output z. Because there are

four equations and four unknowns a solution such that the

implemented metric is equal to the optimal metric, i.e.,

Wclc0 = Wclc0' for all cl and cO is not possible. However a

least squared error fit can be found to minimize

W = _(Wclc0'-Wclc0)2

ClC0

(3.8)

where 0 < w 0 < 7 and 0 < w I < 7. Since (3.8) is a

quadratic equation, W may be minimized by setting:

101

_W 6w
m

6w I 6w 0
- 0 (3.9)

which results in:

I

w I = _(w00'+w01'-w10'-Wll'+14) (3.10)

I

w 0 = _(w00'-w01'+Wl0'-Wll'+14) (3.11)

_2

01

SOFT

DECISION 2

SOFT

DECISION 1

Figure 3.9. Soft decision logic.

If (3.10) or (3.11), give a value of w 0 or w I outside

the range 0 through 7, then the soft decision to the

decoder is hard limited to this range, otherwise the soft

decision inputs are taken to be the nearest integers to the

solution of (3.10) and (3.11). The values of wOO' through

wll' are calculated from (3.7), where the symbol

102

probabilities are calculated using the sector probabilities

and Baye's rule, and the sector probabilities are

calculated using the procedure described in Chapter 2.

This procedure yields the same weights for Es/N 0 ranging

from 5dB to 12dB, i.e., the weights appear to be

insensitive to signal-to-noise ratio. This result pertains

to the use of 3-bit weights. Of course, if sufficiently

fine resolution were used for the weights, there is no

doubt small differences would appear over the range of

useful SNR's. The soft decisions yielded are the ones of

Figure 3.8a, which were also empirically found to be the

best. Figure 3.9 illustrates the soft decision logic, a

circuit which generates the soft decisions of Figure 3.8a,

from the phase code of Figure 3.6.

3.2.3 Outboard Decision Logic

The outboard decision logic makes the outboard bit

determination using the information bits from the 24-sector

phase quantizer. This is an alternative to building

another threshold detector for this purpose. The design of

the outboard decision logic, shown in Figure 3.10, is based

on two principles:

103

i) The optimal outboard decision threshold to use

depends on the original codebits, gl and go- For example,

if glg0=00, the decision is between vectors 000 and 001,

and the optimal threshold is the line formed by the vectors

Ii0 and Iii (see Figure 3.11). Likewise, if glg0 = 01,

then the optimal threshold is the line formed by the

vectors I00 and I01.

2) When the information from the 24-sector phase

detector is used, the combination of _4 through _i which

determines the outboard bit depends on the optimal

threshold (as determined by gl and go) and on the position

_0

DO

D1

D3

D4

D5

D6

D7

Y

Figure 3.10. Outboard decision logic.

104

110
2

100 3 I 010

O01 4_ I 1 0 000

C_CoXo

011 101

111
(A)

Figure 3.11.

(s)
110

2

IO0 3 A

\

\

OOl
011

6

111

010

/
0 000

k C_ CoXo

k

7
101

Threshold for outboard decision a) clc0=00,

b) clc0=01.

of the received vector with respect to the threshold. For

example, if glg0 = 00, and the received vector is within 4

quantization points of the vector 000 or 001, the decision

is between the right half plane and the left half plane and

the outboard bit is equivalent to _3- If the received

vector is within one quantization point of the threshold

105

(Ii0 or iii), then the left plane, right plane decision

will not work and the combination _i ® #4 is used instead.

It turns out that for all four values of glgo, there

is a combination which will work for the case where the

received vector is removed from the threshold by more than

one quantization point, and another which works for the

case where the received vector is within one point of the

threshold. The purpose of the 8xl multiplexer (MUX) is to

select the appropriate combination for the given case.

To accomplish this, _i, the output from the Viterbi

decoder is re-encoded to generate 91 and 90, maximum

likelihood of the original codebits, gl and go, based on

the results of maximum likelihood decoding. The bits _I

and y_ are estimates of gl and gO based on the location of

the received vector. In making the outboard decision, g_

and 90 are compared to y_ and y_, respectively using the

exclusive or gates at the top of the diagram. If

_i_0 differs from 9140 in both bits, it means that the

received vector is one or fewer quantization points away

from the threshold, and this is indicated by r = i. The

bits 41, 40, and r cause the MUX to select the logical

combination of phase code bits which yields the correct

decision. In each of the eight cases, the logical

combination to use was determined by inspection.

106

The bits 31"1 and _0 are determined from the phase

information bits. Recall that #4=I means that I < 0,

whereas _3 = 1 means Q < 0. Therefore, _4 and _3 together

specify the quadrant of the received vector space. In the

upper right and lower left quadrant, gl = 0, otherwise, gl

= I. Therefore, _i = _4 e _3- Tile bit _2 changes

whenever a 45 line is crossed, therefore _0 = #2.

3.2.4 Performance of Pragmatic TCM

The system shown in Figure 3.4 was constructed in

hardware as well as simulated in BOSS. The performance of

the hardware and of the simulation are shown in Figure

3.12. For comparison, the asymptotic error rate for 8-PSK

and the theoretical error rate for the 64-state Ungerboeck

code are also included. The asymptotic error rate for

pragmatic TCM is calculated as QtN_ J" The error rate

for the 64-state Ungerboeck code was calculated from the

bit error spectrum technique. At a bit error rate of 10 -5 ,

the coding gain of this system is approximately 2.6dB,

demonstrating the practicality of pragmatic TCM for 8-PSK.

As was discussed in Section 3.2.2, the soft decision

assignments of Figure 3.8a were found to be superior to

those of Figures 3.8b and 3.8c. The comparison is shown in

Figure 3.11. The results of the simulation were presented

107

at the International Phoenix Conference on Computers [28]

in Communications, and the results of the hardware

implementation were presented at ICC/Supercomm 92 [29].

iii

<

O

iii

rn

10 -1

-2
10

-3
10

-4
10

10 -5

-6
10

I I I I ! I I

I I I I I I I

6 7 8 9 I0

Es/NO (dB)

Figure 3.12. Performance of 24-sector 8-PSK pragmatic TCM

using different weights.

108

-1

LU
I--
,¢
n-
n-
O
n"
n-
UJ
I--

10

-2
10

-3
10

-4
10

-5.
10

UNQUANTIZED I&Q

4-BIT I&Q

Figure 3.13.

RATE 2/3 8-PSK PRAGMATIC TCM

(STANDARD 64-STATE CODE)

UNCODED

QPSK

8-PSK

5-BIT PHASE

(SIMULATED)

5-BIT PHASE

(MEASURED)

! !

4 5

Eb/N0 (dB)

Performance of pragmatic TCM.

7

109

3.3. Multimode TCM

As mentioned by Viterbi [7], one of the advantages of

pragmatic TCM is that it allows the same Viterbi decoder to

be used for a variety of modulation formats. Given the

interest in constant envelope signaling for satellite

communications, the NMSU telemetry lab investigated the

design considerations for a modem/codec to operate for

BPSK, QPSK 8-PSK, or 16-PSK [18]. This paper addressed

symbol synchronizer and phase locked loop considerations,

as well as the codec considerations. As part of the design

considerations for the codec, the performance of I and Q

quantization for pragmatic TCM was investigated. This

design assumed the availability of a Viterbi decoder with

4-bit branch metric inputs. At the time, the only

commercially available decoder with this feature was the

STEL-2020 by Stanford Telecommunications. Unfortunately,

this decoder has since been discontinued. However, the

approach of finding an adaptation of the soft decision

inputs, as was done for phase quantized pragmatic TCM in

Section 3.2, is still feasible. The system described in

the multimode study used 4-bit quantization of the I and Q

components, and then using a read only memory, assigned a

4-bit metric to each decision region.

110

T

>-

iii
r_

h

I I

0

I

Z
I

x

º-'Â

,,.}1
.Ul

@
(D

m

I

!

[u.I
"''4

°9 m

-40 _° _Q

r_
--LLI
_Q
r_

uJ
O>a

o

h-
W

, _Jn

LUI

tl

o
X

d

0
u

"d
0

4-J

D_

111

The multimode decoder is shown in Figure 3.14.

Pragmatic TCM in BPSK, QPSK, 8-PSK, or 16-PSK is

transmitted over an additive white Gaussian noise channel,

and received by aquantizer with 16-1evel quantized outputs

for the I and Q components. For BPSK and QPSK operation,

which the Viterbi decoder chip was initially designed for,

the I and Q components are fed directly to the soft

decision inputs. In the 8-PSK and 16-PSK modes, the I and

Q components are used to address a ROM, which provides

branch metric inputs. Additional ROM's are used to provide

the outboard decisions fcr 8-PSK and 16-PSK. The inputs M1

and M0 select the mode of operation: 00=BPSK, 01=QPSK,

10=8-PSK, and II=I6-PSK. The mode select units select the

soft decision or branch metric mode of the Viterbi decoder,

and also enable the ROM's which provide metrics and soft

decisions for 8-PSK and 16-PSK. If the BPSK or QPSK mode

is selected, XSEL, the external branch metric select on the

Viterbi decoder is non-asserted, meaning that the decoder

will use soft decisions. If the BPSK mode is selected, SEQ

(sequence) is asserted, meaning that the two code bits are

received in series, but in all other modes, SEQ is non-

asserted, and the inputs to the decoder are accepted in

parallel. As in the case of the phase quantized pragmatic

system, the outboard decision requires the decoded

sequence, as well as information of the location of the

112

received vector, and the location of the vector must be

delayed to match the delay introduced by the Viterbi

decoder.

The branch metrics and outboard decision metrics are

obtained from ROM's. Each ROM has 256 addresses, resulting

from the use of four bits of I and four bits of Q. The ROM

giving the metric must be 16 bits wide, to provide four 4-

bit metrics. Separate metrics must be provided for the 8-

PSK and 16-PSK modes of operation, since the optimal

metrics are not the same for both cases. The outboard

decision table must have a width of 8 bits for 16 PSK and

four bits for 8-PSK. This is because an outboard decision

consists of one bit for 8-PSK and two bits for 16-PSK, and

in each mode, four outboard decisions are made, for the

four possible combinations of code bits. When the codebits

are determined, by reencoding the decoded sequence, the

system selects the appropriate outboard decision.

The bit error rate performance for the multimode

system in 8-PSK and 16-PSK modes is shown in Figure 3.15.

The performance of BPSK and QPSK is already known from the

manufacturers data sheet. The performance results shown in

the Figure reflect the effect of using 4-bit numbers for

the I and Q components, as well as for the metrics. The

multimode system, consisting of a standard Viterbi decoder,

113

.

hi

t-

o

LIJ

I--
{z=

-1
10

-2
10

i0-3

-4-
10

1 0 -5

RATE I/2

BPSK/QPSK

-6 - ! - i

0 2 4

Figure 3.15.

MULTIMODE DECODER PERFORMANCE

RATE 3/4

16-PSK

\

RATE 2/3

8-PSK

UNCODED

8-PSK

UNCODED

BPSK/QPSK

i i i i

6 8 10 12

Eb/NO (dB)

Mult imode performance.

14

114

and a small.amount of additional hardware provides

meaningful coding gain in all modes of operation. At a bit

error rate of 10 -4 , coded 16-PSK gains about 2.2dB over

uncoded 8-PSK. At a bit error rate of 10 -5 , coded 8-PSK

gains essentially 3dB over uncoded QPSK. Thus it can be

seen that the pragmatic standard allows the design of a

decoder which is effective both in terms of hardware

minimization and performance.

3.4 Bit Error Spectrum

The bit error spectrum technique is an analytical

method for predicting the error rates of trellis codes,

motivated by the long run times required for simulation of

the more complex trellis codes. Bit error spectrum methods

have also been developed by Rouanne and Costello [13], and

also by Zehavi and Wolf [31]. In this work the predominant

emphasis is oll 8-PSK trellis codes; however, the technique

is also applicable to trellis codes of other signal

constellations, such as Multi-h. In fact, the first step

in the algorithm is to define a table which lists metrics

for all of the symbols of the signal set, with respect to

the zero symbol. In this way, the bit error spectrum

algorithm is made as independent as possible of the

geometry of the signal set. To the bit error spectrum

115

program, the signal set is simply a set of integers, each

of which is associated with a floating point metric, or in

some cases, as will be explained, more than one metric.

To apply the technique to arbitrary constellations, the

signal set must be reduced to a vector representation using

a technique such as the Gram-Schmidt procedure, so that

metrics between the symbols can be calculated. This can in

fact be done for any set of M signal vectors for which an M

by M table of inter-symbol correlations can be calculated.

The bit error spectrum technique is based on the

important algebraeic properties of convolutional codes.

The encoder is a finite-state machine, with outputs

assigned to the transitions between states. The purpose of

the decoder is to find the maximum likelihood state history

of the decoder, based on the received sequence of code

symbols. An error event is defined as the selection of an

incorrect path which diverges from the correct path and

then reconverges. The probability of an error event is

directly dependent on the vector distance between the

correct path and the error path.

A common error rate estimate is the asymptotic error

rate, the probability of the most likely error event. The

asymptotic error rate is not an accurate estimate because

the most likely error event is, of course, not the only

error event, and the numbers of less likely error events

116

can be very large, even as their numbers are very small.

At high signal-to-noise ratios, the probabilities of the

less likely error events diminish, and the true error rate

approaches the asymptotic error rate in the limit. For

more complex codes, the minimum distance error path is not

necessarily a path of the minimum number of branches, which

complicates the problem of finding the most significant

error events. Typically simulations are accurate at low

signal-to-noise ratios, since shorter run times are

sufficient to generate a statistically representative

number of errors. The bit error spectrum technique is

intended to bridge the gap between low signal-to-noise

ratios, where simulations are accurate, and high signal-to-

noise ratios, where the asymptotic curve is accurate.

The bit error spectrum technique is a means of

calculating higher grade asymptotic error rates. That is,

instead of calculating an error rate based on the single

most significant error event, an error rate can be

calculated from the sum of the N most significant error

events:

N

Pb -< _ B(Ei)P(Ei) (3.12)

i=l

where Pb is the probability of bit error

117

E i is the ith error event

B(Ei) is the bit error weight associated

with error event E i

P(Ei) is the probability of error event Ei.

The bit error weight of an error event is the number

of data bits which will be missed if the error event

occurs, divided by the number of data bits associated with

each stage of the trellis. This is the error event's

contribution to the overall bit error rate. Because path

selection occurs at each stage of the trellis, each stage

of the trellis is regarded as an opportunity for an error

event to occur. Because the probability of an error event

depends only on the metric of the error path, the

previously given summation can be regrouped and written as:

J K

Pb _< Z PJ E B(Ejk) (3.13)

j=l k=l

where Pj is the probability of an error path of

a specific metric, which may occur for

more than one path

Ejk is the kth error event with probability

Pj

B is the bit error weight.

118

Assuming the noise to be additive white Gaussian, the

probability of an error event is calculated from the Q()

function giving:

where mj is the path metric, and G = NO2 "

This form of the equation is the most efficient form

for calculating the bit error probability, since the

summation in k is a function of the code itself, the total

bit error weight associated with a particular metric j. It

is these weights which are generated by the bit error

spectrum technique.

3.4.1 The Generating Function

The bit error spectrum technique is structurally

similar to the generating function, a classical approach to

the analysis of trellis codes. Because the concepts

involved in the generating function are helpful in

understanding the bit error spectrum technique, a brief

discussion of the generating function will be presented

119

before resuming the discussion of the bit error spectrum.

The generating function yields a sum of products expression

which represents all of the paths leading to a specific

node of the trellis as follows:

Xnode : al Wml + a2 _12 + ..- (3.15)

where mi is a metric with respect to the all zeroes path,

ai is the number of paths of metric mi, and W is simply a

base of the exponent. This is the simplest form, typically

generating functions also include weighting terms for the

number of branches associated with a path, and the number

of non-zero data bits associated with a path. The use of

generating functions dates back to the development of

binary convolutional codes, with mi representing Hamming

distances [i]. Zehavi and Wolf [31] had the insight that

the generating function can also be applied to Euclidean

Distance codes with m i being a real number rather than

strictly an integer. Due to the fact that there is an

infinite number of paths to each node, the node equation,

Xnode is an infinite series, but as with other infinite

summations, it may be possible to find a closed form

expression.

The generating function is derived from the node

equations, which are obtained from the state diagram of the

120

encoder. The state diagram for a simple 4-state code is

shown in Figure 3.16. An auxiliary fifth state is added,

to provide separate starting and finishing states for error

paths, all of which diverge from and rejoin the all zeroes

path. Binary convolutional codes are linear, which means

W3.414

W0.586

wO.S 6 wO.Se6

W 2-00° W3.414 W 2"000

wO.58s
W2.0_ W2.000

W 0 .000

W2.000

W4.000

Figure 3.16. Modified state diagram for convolutional

encoder.

that performance with respect to the all zeroes path being

the correct path, is equivalent to the performance of the

code in general. The signal set mapping of TCM codes, is

not strictly linear, however, the property of quasi-

linearity, a term coined by Rouanne and Costello [13],

121

allows TCM codes to be analyzed with only slightly more

difficulty than linear codes, as will be discussed later.

The node equation for each state is written in terms of the

node equations for the predecessor state. The "+"

operation denotes the convergence of paths and the

coefficient indicates the number of paths. Because the

metric is represented as an exponent, the addition of a

metric due to an added branch is represented by

multiplication. Thus, the node equations for the 4-state

rate 2/3 8-PSK code are:

X b = 2W2.0OOXa + 2W2.0OOXc

X c = (W3.414 + wO.586)Xd + (W3.414+wO.586)Xb

Xd = (wO'586+W3"414)Xd + (W3"414 + wO'586)Xb

X e = 2W2.0OOXc + W4.0OOXa

(3.16)

(3.17)

(3.18)

(3.19)

Error events are caused by paths which converge to node

"e", but the error path includes metrics accumulated only

after the error path has diverged from node "a", therefore,

the generating function is found by solving the system of

Xe

equations for Xa as follows:

W2.000(wO.586 + W3.414)
Xe W 4.000 + (3.20)
Xa - I-(I-2W2.000) (wO.586+W 3.414)

122

Thus we can see that the infinite number of error paths for

the 4-state trellis codes is representable by a closed form

expression.

3.4.2 Bit Error Spectrum Algorithm

The bit error spectrum technique is similar the

generating function in the sense that the paths to any node

are defined in terms of the paths to its predecessor nodes,

and clearly defined operations exist to depict what happens

when a path picks up an additional branch to a successor

node and there merges with other paths. The bit error

spectrum is in fact a programmatic method for finding the

terms of the generating function. Like the generating

function, the bit error spectrum technique finds error

paths with respect to the all zero path, and represents

state zero as two states, a starting state from which error

paths diverge, and a finishing state, to which error paths

converge. Each entry in the bit error spectrum includes

three items of information: the metric, the number of

paths, and the average bit error weight per path. Each of

these three numbers is a floating point value, the reason

for non-integer number of paths and non-integer bit error

rates will be explained subsequently.

123

The program described here is iterative. The first

iteration is started by recording one path at the starting

state, with a bit error weight of zero and a metric of

zero. The first iteration yields all paths of only one

branch, the N TM iteration generates all paths of N or fewer

branches. At each iteration, the algorithm derives a

revised spectrum from the spectrum created by the previous

iteration. After a sufficient number of iterations, all of

the entries which significantly impact the bit error rate

of the code should be obtained, although there is

straightforward way to predict how many iterations will be

required.

The bit error spectrum is stored in the computer in

the form of two tables, one that contains the spectrum

generated by the previous iteration, and one that holds the

spectrum being generated by the current iteration. The

table contains a row for each state, including an auxiliary

row for the finisher state. Thus for an S state code,

there are S+I rows, numbered 0 through S. E,_ch row has

room for a predetermined number of spectral entries, which

are stored in order of increasing metric.

The procedure for generating a new spectrum from the

previous spectrum is as follows. The starting state, state

0, is never updated, since all of the paths which converge

to state 0 of the code are written to the finisher state,

124

row S of the bit error spectrum table. Therefore the

update operation is performed for rows 1 through S of the

next spectrum table. The operation of updating the

spectrum must reflect what happens to the paths when they

pick up an additional branch in going from the predecessor

state to the current state, and then merge with other

paths. Each entry in the previous spectrum of each

predecessor state generates a new entry in the updated

spectrum of the current state. The metric of the new entry

is equal to the metric of the previous entry plus the

transitional metric associated with the branch from the

previous state to the new state, while the bit error weight

of the new entry is found by adding the bit error weight of

the branch to the bit error weight of the previous entry.

The bit error weight of a branch is the fraction of nonzero

bits associated with the input which causes the encoder to

take that branch. If more than one entry of the same

metric results, the entries are combined by taking the sum

of the numbers of paths and the weighted average of the bit

error weights. In practice, memory is conserved by looking

to see if an entry for the resulting metric already exists,

and if so, performing the combine operation before the new

entry is written. At all times, the entries are kept in

order of increasing metric. The iteration is completed by

generating a new spectrum for every state of the next

125

spectrum table, each new spectrum being generated from its

predecessor states. Once a sufficient number of iterations

has been performed, the bit error rate is estimated from

the spectrum of the finisher state, row S, using:

Pb = _NiAiQ (mio)

i

(3.21)

where: m i is the metric of the iTM entry

Ni is the number of paths of metric i

Ai is the average bit error weight of

paths of metric i

NO

Gis T

To illustrate this operation consider the example

shown in Figure 3.17. Predecessor states P1 and P2 of the

previous spectrum are to be combined into the current state

C of the next spectrum. The two predecessor states are

combined in turn, Pl first. Since P1 is the first

predecessor to be combined, there is initially no

information at state C. The existing entries at state P1

pick up the additional bit weight and metric of the branch

from state P1 to C, thus entries with metrics 4.000 and

6.000 at P1 generate entries with metrics 6.000 and

126

PREVIOUS
SPECTRUM

14.OOOl16.OOOl

STATE
P2

I KEY: NUMBER OF PATHS
AVG BIT ERROR WEIGHT
METRIC

BRANCH:
BIT WEIGHT=I.0

0

BIT WEIGHT= 1.5
METRIC=2.0

Figure 3.17. Bit error spectrum operation.

8.000 at C. When P2 is combined in C, the entry of metric

2.000 generates an entry with metric 4.000, and no entry

with this metric already exists. Therefore the number of

paths is the same, but the bit weight and metric are

increased by the values associated with the branch from P2

to C. The entry with metric 4.000 at P2 generates a metric

of 6.000 at C. An entry with metric 6.000 already exists

at C because it was generated by PI, previously. Therefore

the resulting number of paths is 3 from PI, plus 8 from P2,

for a total of ii. The new average bit weight is the

127

weighted average of bit weights for paths from P1 and from

P2 This is equal to 3(2.5) + 8(3.0+1.5) = 3 9555 The
" ii " "

previous spectrum at P2 generates no entry with metric

8.000, so the entry generated by P1 remains the same as it

was. Note that in this example the branch metrics are the

same, but this is not necessarily always the case. Also,

the numbers of paths are shown here to be integers, but due

to the non-linearity of the signal set mapping, it is

necessary to use non-integer numbers of paths for TCM

codes.

To make the bit error spectrum work for arbitrary

codes and arbitrary signal sets, the code and signal sets

must be defined in a way understood by the machine. This

is accomplished by creating a set of tables: the next state

table, the next symbol table, the metric table, and the bit

weight table. The next state table gives the next state as

a function of current state and current input. The next

symbol table gives the output symbol associated with each

transition depicted in the next state table. Strictly

speaking, the bit error spectrum algorithm should have a

previous state table and a previous symbol table, since

from the previous example, it can be seen that the

algorithm merges paths from predecessor states. This,

however, is unnecessary, because interchanging the roles of

predecessor and successor states generates a "dual" code,

128

with exactly the same error properties as the original

code. The bit error spectrum technique starts with these

tables, the tables themselves can be generated by another

program (as a function of tap settings or encoder impulse

response), or even written manually.

3.4.3 Signal Set Mapping

The metric table is the means of defining the signal

set for the bit error spectrum algorithm. To the program,

the signal set is simply a set of integers, 0 through M-l,

with which a set of metrics is associated. The specific

geometry of the signal set is not important to the program.

What is important is that the metrics be defined in a

meaningful way, ideally as log-likelihoods. Thus the

technique could be used for multi-h or FSK codes, as well

as for PSK or QAM. It is assumed, however, that the TCM

code is generated by mapping an underlying linear code onto

the modulation signal set, and that the metrics are defined

with respect to symbol zero. For example, the rate 2/3

8PSK encoder of Figure 3.16a accepts 2 data bits, Xl and

X0, which are used to generate 3 codebits, Y2, Y1 and Y0-

The codebits are then mapped onto the 8-PSK signal set.

Here, natural mapping is chosen as illustrated in Figure

3.16b.

129

CONVOLUTIONAL
ENCODER

Y2

Y1

Y0

(A)

(B) 010

011 .

Z(3_

Z(2)

z(o)
100 _'_ _ 000

101 Z(6) 111

110

Figure 3.18. a)Rate 2/3 convolutional encoder, b) natural

8-PSK mapping.

The problem to be faced here, is that the mapping is

not strictly linear, thus we are not justified in assuming

that the performance of the code with respect to the all

zeroes sequence is equivalent to the performance of the

code for all sequences. If we let Y be a binary number (or

the equivalent integer) which indexes the modulation signal

vector, and Z(Y) be the actual vector selected by Y, then a

strictly linear signal set mapping would give the result:

130

m(Y2) = iZ(YI+Y2)-Z(YI)I 2 = IZ(Y2)-Z(0)12

for any choice of Y1 and Y2. Here the "+" operation is the

bitwise exclusive or, and IZl-Z012 denotes the square of

the Euclidean distance between two vectors. Also, Y

denotes a triple of bits, f2, Y1 and Y0 (with subscripts),

whereas Y1 and Y2 (no subscripts) denote two such triples.

This expression shows how the vector space is affected by a

change in the underlying codebit space. For a linear

mapping, the Euclidean distance between the vectors

corresponding to the indexes Y1 and YI+Y2, depends only on

Y2, and is thus denoted m(Y2). For the 8-PSK signal set

mapping, linearity applies to some but not all values of

Y2. For the non-linear cases, the metric distance m(Y2)

depends on Y1 as well as Y2, however it is usually the case

that there are fewer possible values of m(Y2) than there

are values of YI. The fact that the non-linearity of the

signal set mapping is of a limited extent is the basis of

Rouazlne and Costello's concept of quasi-linearity [13]. To

illustrate this, Table 3.1 shows YI+Y2 and m(Y2) for all

values of Y1 and Y2. As can be seen, m(000), m(001),

m(010), m(100), m(101), and m(ll0) do not depend on YI, and

have values 0.000000, 0.585786, 2.000000, 4.000000,

3.414214, and 2.000000 (scaled to Es=l), respectively. The

131

values of m(011) and m(lll) can be 0.585786 or 3.414214

depending on YI. The effect of this on the bit error

spectrum program is that the metric table for 8-PSK must

have dimensionality 8 by 2, as opposed to 8 by I, for a

strictly linear 8-ary mapping. The symbols 0, I, 2, 4, 5,

and 6 each have only one metric. The symbols 3 and 7 are

split between two alternative metrics. When the bit error

spectrum program encounters a symbol 3 or 7, two entries

with number of paths equal to 0.5 are generated to give the

symbol each of its possible metric values. To save

computational time, the bit error spectrum employs a symbol

split table, to give the number of possible metrics for

each symbol. For 8-PSK, the symbol split table is [I, I,

i, 2, i, i, I, 2]. Thus the algorithm generates fractional

paths only when necessary. For other signal sets, a

similar procedure is followed. A table similar to Table

3.1, is constructed to determine which symbols have

multiple metrics, then the algorithm generates fractional

paths for these symbols.

The bit error weight table associates a weight with

each encoder input. The bit error weight is the number of

nonzero bits in an input divided by the total number of

bits in an input. Thus, for a decoder which accepts two

bits per symbol, the inputs are 00, 01, I0, and ii, and the

bit error weight table is [0.0, 0.5, 0.5, 1.0].

132

GO v.- _ CO o3 _ _.- OO

d_ _ d d_d

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 O 0 0 0 0
O O O O O O O O

v- O O O O O O O O
O O O O O O O O

aJ ai ai ai ai a_ ai

O _1" _ _ _ '_" _" '_

05 e5 o5 cd _ _ o5 _

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
_.. 0 0 0 0 0 0 0 0

O O O O O O O O

O4 I'_ I'_ 04 O,I I'_ I".,. O,I

0 _ gO CO _ '_-- CO _ ";--

o5 d d _ o5 o d 6

O

O

O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
0 0 0 0 0 0 0 0

o,i ai ai o,i a_ aJ c_ ai

0
0

CO CO CO CO OOOOO0(3O

I..0 1.0 It) 14") i..0 I._ _ uO

dddddddd

O O O O_O O O O
O O O O O O O O

O O O O O O O O O
O O O O O O O O O
O O O O O O O O O

O O O O O O O O

oo oooddo

8§°oO°o
_.o ,-

v-- 0 v--
0 v'- v'-

O4
m

>-

N

O4
>-
+

w--

>-
v

N

II
A

04

>-
v

E

I
co

Q_

_J

4.J

O

O
-,-I
4.3
-H

"tJ

-,--.I
,.O

O

4A
O

c,'3

n3

133

3_4.4 Applications and Results

The bit error spectrum technique is an alternative to

simulation in comparing the performance of various trellis

codes. The bit error spectrum technique is also useful as

a part of a code search procedure. The time needed to

complete a bit error spectrum depends on the number of

iterations. This is a nonlinear relationship, since, as

the bit error spectrum tables accumulate more entries, it

takes longer and longer to complete each iteration. Thus

it is possible to obtain the first five or ten spectral

lines in considerably less time than it takes to obtain

twenty or thirty. Thus it is possible to quickly eliminate

a large number of inferior codes on the basis of short

spectrums, and then use longer spectrums to evaluate the

few that remain.

A convolutional code can be completely defined in

terms of its tap settings, the connections of the shift

register to the parity checks, or equivalently in terms of

its impulse response. Note however that an encoder has as

many impulse responses as there are bits per symbol. For

example, if an encoder accepts two bits per symbol, the

response to the input 01, and to the input I0 are both

needed to completely define the code. For example, the 64-

state Ungerboeck encoder of Figure 1.13d has impulse

134

responses 6-5-7-6 and 2-0-4-2. From £hese impulse

responses, the response to any input can be generated. A

routine which allows the computer to generate the code from

these sequences makes it convenient to experiment with

various codes, entering the impulse responses at the

console. Interestingly enough, it is not difficult to find

reasonably good codes by trial and error, selecting the

impulse responses with regard to Ungerboeck's set

partitioning principles. By this strategy, a 1024-state

code with a coding-gain of idB over the 64-state code was

found after only twelve codes were tried. The encoder for

this code is shown in Figure 3.19.

I - _y,

i --Y0

Xl- ______ _ D

XO _ D _ D

Figure 3.19. 1024-state convolutional encoder.

135

When the NMSU pragmatic TCM project was in its early

stages, the bit error spectrum technique was used to

determine if the technique of code puncturing [32], could

also be used to incorporate a binary Viterbi decoder into a

TCM system, as pragmatic TCM does. The concept was that

two bits would be clocked into the industry standard, rate

onehalf, constraint length 7 convolutional encoder,

generating four code-bits. The four codebits would be

linearly mapped to three symbol selection bits, by means of

a 4 by 3 binary matrix. This matrix would represent all

possible combinations of puncturing and mapping, as well as

a large class of mappings that do not directly involve

puncturing. The combination of encoder and mapping would

generate a TCM code, which could then be decoded with the

Viterbi decoder, using quantization and soft decisions, as

was done to implement pragmatic TCM. The soft decision

adaptation is a compromise which, like an implementation

loss, can be expected to effect all codes more or less

evenly. Therefore, the use of the bit error spectrum

technique to select the puncturing scheme which generates

the best code as predicted by Euclidean distance is

reasonable.

Since all mapping and puncturing schemes are

represented by a 4 by 3 binary matrix, a brute force

approach would require 212 = 4096. By making a judgement

136

on the basis of the first five spectral lin_s, an ordinary

PC could evaluate all possible combinations in a few days.

However, the results of this experiment showed that, at

least for the time being, it would be more productive to

pursue pragmatic TCM than punctured TCM.

Figure 3.20 compares the results of bit error spectrum

analysis to the results of simulations. As can be seen, the

bit error spectrum results upper-bound the actual

performance, and this effect is very pronounced at low

signal-to-noise ratios. At low signal-to-noise ratios, the

bit error spectrum will even yield error probabilities

greater than I, a consequence of the overlapping

probabilities in the terms of the union bound. The bit

error spectrum technique remains useful as a means of

comparing the relative performance of different codes.

Figure 3.21 compares the bit error spectrum results of the

16-state Ungerboeck code to the asymptotic performance of

the pragmatic code. Since the pragmatic code is lower

bounded by the asymptotic curve, and t_]e 16-state code is

upper bounded by the bit error spectrum calculation, we can

expect the performance of the two codes to be essentially

equivalent between bit error rates of 10 -5 and 10 -6 . At

bit error rates of less than 10 -6 , the 16-state code gains

superiority. Essentially the same conclusion can be drawn

from Figure 3.22, which shows bit error spectrum results

137

for both the pragmatic code and the 16-state code. The

source listing for the bit error spectrum program is given

in appendix A.

10 -I

I0 -2

W
10 -3 -

n"

rr"
O 10-4 -
rr
n,"
u.I
_- 10-5 -
m

10 -7 -

SIMULATION:

[] 16-STATE

-'t- 64-STATE

.A. 1024-STATE

, i I I I

RATE 2/3 8PSK TCM

BER SPPECT
16,64,1024

I I I I I I I

m

R

m

6 6.5 7 7.5 8 8.5 9 9.5 10

EslN0 (dB)

Figure 3.20 Bit error spectrum calculations compared with

simulation results.

138

UJ

O

uJ

F-

10 -2

10 -3

-4
I0

10 -5

10 -6

I0 -7

I I I

PRAGMATIC
TCM

ASYPTOTIC

I i I

RATE 2/3 8PSK

16-STATE TCM
BER SPECT

10 -8

10

I I I I I I I

8 8.5 9 9.5 10 10.5 11 11.5 12

Es/N0 (d B)

Figure 3.21. Bit error rate spectrum result for 16-state

code compared with asymptotic error rate for pragmatic

code.

139

uJ
F-
<

n-
O

_C
UJ

F-
s3

10 -2

-3
10

-4 --
10

10 -5 -

-6 -
10

10 -7 -

10 -8 -

10 -9 -

I I I I I I

PRAGMATIC

RATE 213 8PSK
BIT ERROR SPECTRUM

RESULTS

16-STATE
UNGERBOECK

I I I I I I I

8 8.5 9 9.5 10 10.5 11 11.5 12

Es/N0 (dB)

Figure 3.22 Bit error rate spectrum comparison of pragmatic

TCM and 16-state Ungerboeck TCM.

3.5 Conclusion

This chapter has presented experience gained in TCM

codes before undertaking the high-speed TCM architecture

project. The simulations confirmed the expected

performance of various TCM codes, while the bit error

spectrum technique supplies additional theoretical input.

140

The high-speed design is to be presented in the next

chapter. As this is done, it will become apparent how

issues such as quantization and coding standard affect the

overall complexity of the design. On the basis of the

research described in this chapter, the 16-state Ungerboeck

code seemed to be the most favorable coding standard,

although the decision was rather close. The techniques

presented in Chapter 4, which are applied to the 16-state

decoder, are also directly applicable to the design of a

pragmatic decoder. However, it appears that the 16-state

Ungerboeck code requires slightly less hardware, and is

therefore the code used in the high-speed design.

141

4. HIGH-SPEED DESIGN

The design of the high-speed decoder is hierarchical

with the top level consisting of three major units: The

metric calculator, the decision-making (ACS) unit, and the

path memory unit, as shown in Figure 4.1. The decoder is

2

designed to decode the rate] 8-PSK 16-state Ungerboeck

code having the decoder shown in Figure 4.2a; however, in

order to achieve the high-speed design, the encoder is

modified as shown in Figure 4.2b, for reasons discussed in

Section 4.3.2. The encoder outputs 3 bits, Y2, YI, and Y0

which specify an 8-PSK vector according to natural mapping.

That is, the three bits specify a binary integer k, and the

phase of the transmitted vector is _=(k+_)_ , as shown in

Figure 4.3.

5

I ,

e--/--
5

METRIC
CALCULATOR

56
!

!

ACS
UNIT

32
I

!

PATH
UNIT

Figure 4.1. Top level diagram of high-speed decoder.

The decoder expects to receive a pair of 5-bit numbers

representing the I and Q components of the received signal

vector. The representation of I and Q is naturally mapped,

uniformly quantized binary numbering, with 0 representing

142

a±F31 31

-32--_Es and 31 representing + 32--_Es as illustrated in

Figure 44. In fact, the decoder uses natural numbering to

represent all numbers used in the algorithm. The design is

illustrated down to the logic gate level, and all of the

logic has been verified using BOSS. Every operation in the

algorithm has been pipelined. Also, the design is fully

parallel and fully synchronous, so that every component of

the system will run on the symbol clock.

143

Y2

X1

YI

_Y0

(A)

(B)

X1

Figure 4.2. a)16-state Ungerboeck encoder, b) modified

encoder.

144

(ele) Q

52 L , $1(001)I I I I__- _,&" r"----f"----

' _ / _, '

I- --L r- --r - -I- - -,_o_+,_ ',-_-F-/r-,, ._o¢ooo_
--- r"J"_'_ r/_F- % Sk(Y2Y1Ye)

¢_) s_,Z_ L\L__L___L,\
---r--, -- ii) \

\- - -I- - -I -

' _ ¢',1+)_'+_-\(101)

Figure 4.3. 8-PSK signal constellation.

145

Figure 4.4 .

I

I

m

_/__
SIGNAL
LEVEL _a...

--I--

--t--

-"1'--

11111

11110

11101

11100

11011

11010

11001

11000

10111

10110

10101

10100

10011

10010

10001

"1-- 10000
0 _

-1-- 01111
I

"i--
I

-T--

I
.J._

--4---

.-.4---

--.p--

--I"-

"1---

""1"-

-- "3"-

01110

01101

01100

01011

01010

01001

01000

00111

00110

00101

00100

00011

00010

00001

00000

5-bit I and Q inputs

5-BIT
IORQ
INPUT

for high-speed codec.

146

4.1 Pipelining

Pipelining is a well known technique in the design of

digital systems. The basic idea is as follows. Suppose a

(B)

Figure 4.5. a) multi-stage logic, b) pipelining.

given logical operation requires N layers of gates, as

shown in Figure 4.5a. The speed of the operation is

limited by the propagation delay through these gates. To

pipeline the operation is to add a latch after each gate as

shown in Figure 4.5b. The time required to complete the

operation is still N gate delays; however, a second

execution of the operation can begin as soon as the result

of the first stage of the first execution of the operation

is clocked into the first latch. Thus, although the time

delay between the input and the output is unchanged, the

throughput of the circuit is increased. The rate at which

the operation can be repeated is limited by 1 gate delay as

opposed to N gate delays. Of course the designer will not

147

necessarily place a latch after every single gate, but will

choose the tradeoff between speed and hardware which is

best suited to the application. The codec presented here

employs no more than the equivalent of 3 NAND gates between

any pair of latches in the system.

The Viterbi Algorithm consists extensively of

arithmetic and logical operations which can yield increased

throughput when pipelining is applied. As an example of

this, consider the operation of adding two bits. The sum

bit is given by the exclusive OR operation, and the carry

bit is given by the AND operation. In N-bit addition, the

well known carry ripple effect occurs, due to the fact that

the sum bit in any position depends on the carry bit of the

previous position, and in turn on the results of the

operation in every less significant position. Thus if an

N-bit adder is designed in the most simplistic way, the

most significant bit will not be available until after the

time required to perform N+I single bit additions. One

established strategy for dealing with this problem is carry

save arithmetic. In carry save arithmetic, the carry bit

is considered to be part of the representation of the

number. Circuitry which uses the result of the operation

may then be designed to accept the carry save

representation, or the carry save result can be converted

back to natural representation using pipelined circuitry.

148

The high-speed codec employs a 5-bit adder in the

metric calculation unit. The 5-bit adder is built out of

1-bit adders as shown in Figure 4.6. The 1-bit adder is

shown in Figure 4.7. Latches are included for both the sum

bit (Z), and the carry bit (C), resulting in a pipelining

XO--

yo I

X1 I

Y1--

X2 I

Y2--

X3--

y3 I

X4 I

Y4--

Figure 4.6. 5-bit adder.

X : " ,_-_'1 D I_ Z

gat2 _ c
Figure 4.7. 1-bit adder.

Y

Figure 4.8. XOR/D module.

149

effect when the 1-bit adder is used as part of a larger

circuit. The 5-bit adder includes a block labeled "XOR D"

which is simply a latched exclusive OR, as shown in Figure

4.8. The 5-bit adder performs the operation of adding two

5-bit numbers in six stages. In effect, the carry ripple

effect has been pipelined. The outputs of the bit adders

at each stage of the 5-bit adder form a carry save

representation of the result. After the sixth stage, the

result is rendered as a 6-bit binary number. The metric

adder also employs a 5-bit subtracter, shown in Figure 4.9,

which is identical to the 5-bit adder, except that the

single bit adders are replaced with single bit subtracters.

The single bit subtracter, shown in Figure 4.10 has latched

outputs for (Z), the difference bit and (B), the borrow

bit.

D ZO

BIT _ _ BIT
SUB _ _ SUB

BIT _ _ BIT
SUB _ _ SUB

D _ _ XOR
-- _ D

Figure 4.9. 5-bit subtracter.

150

Figure 4.10. 1-bit subtracter.

4.2 Metric Calculation

Each time a signal vector is received, the Viterbi

decoder associates a metric with each symbol of the source

alphabet. In the case of TCM transmitted on a two

dimensional additive white Gaussian channel, the metric is

the square of the Euclidean distance between the source

symbol vector and the received vector, that is, m i = (I i-

IR)2 + (Qi-QR)2, where Ii, Qi, IR and QR are the I and Q

components of the i TM symbol vector, and the received

vector, respectively In general, the quantity (Ii-IR)2

can potentially use twice as many bits as are used to

represent IR. For the 8-PSK constellation of Figure 4.3,

there are 8 symbol vectors, with four possible values for

Ii, and the same four possible values for Qi-

The high-speed decoder is designed to accept the I and

Q components of the received vector quantized on a linear

integer scale of 0 to 31 (5-bit quantization) with 0

representing -_s and 31 representing +E_s. Using this

151

scale, the four possible values for the I and Q components

of the signal vectors quantize to 30, 20, i0, and i. The

metric calculator is shown in Figure 4.11. The "metric

comps" (metric components) unit, shown in Figure 4.12,

accepts a 5-bit integer X R (which can be either the I

8

METeI;I
COMPS J8

METRIC _T

COMPS

METRIC
ADDER

METRIC
ADDER

METRIC
ADDER

METRIC
ADDER

METRIC
ADDER

METRIC
ADDER

METRIC
ADDER

METRIC
ADDER

7
M3

7
M6

Figure 4.11. Metric calculator.

component or the Q component of the quantized received

vector) and calculates (X-XR) 2 for X = 31, 20, I0, and i.

Because X R will be a 5-bit number, (X-XR) 2 will be a 10-bit

number. However, because the decoder will use only 7-bit

metrics, and because the first order bit of the square of a

binary number is always zero, the two least significant

(zeroth and first order) bits of (X-XR) 2 are ommitted by

the square law circuit. Therefore, the "metric

152

IR OR QR

GND

5V

5V

5V

5V

5V

GND

5V

GND

5V

GND

5V

GND

5V

GND

5
_/- X0...X4

-- Y0

Y1
5

Y2 5-BIT
SQ

Y3 DIFF
Y4

_ X0...X4

Y2 5-BITDIFF

i

_ XO...X4

YO

-_ Y1

Y2 S-BIT S
Y3 SQ

DIFF
Y4

5V

GND

GND

GND

GND

X0...X4

-- Y0

Y1

Y2 5-BIT
Y3 SQ

Y4 DIFF

5
#

Figure 4.12. Metric comps.

comps" unit provides four 8-bit outputs. Two identical

metric comps units are employed, one to provide (X-IR)2 for

the for values of X, and the other to calculate (X-QR)2 for

the four values of X.

Each of the eight "metric adder" units accepts two

"metric comps" outputs, one from the I unit and the other

from the Q unit, and sums them to calculate the metric for

one of the eight 8-PSK symbols. The metric adder is

153

discussed in Section 4.2.2. Summing the two 8-bit "numbers,

produces a 9-bit number of which two bits are discarded to

form a 7-bit metric. If the most significant discarded bit

(the first order bit of the total) is I, the metric is

rounded up. In binary arithmetic, this amounts to adding 1

to the retained 7-bit number.

XO w

Y0_

Xl_

Y1

X2_

Y2_

X3_

Y3_

X4_

Y4_

X0

Y0

Xl

Y1

X2

Y2

X3

Y3

X4 5-BIT
Y4 SUB

Z0

Z1

Z2

Z3

Z4

B -I, IE-
I

- 'I
GND

X0

Y0

Xl Z0

Y1 Zl

X2 Z2

Y2 Z3

X3 Z4

Y3 B

X4 5-BIT
Y4 ADD

XO

Xl

--X2

X3

X4

Y2

Y3

Y4

Y5

Y6

Y7

Y8

5-BIT Y9
SQ

m

B

m

m

Figure 4.13. 5-bit square difference.

The "square difference" circuit is illustrated in

Figure 4.13. This circuit begins with a 5-bit subtracter

circuit of the type discussed previously. If the borrow

bit (B) is asserted, it means that a larger number was

subtracted from a smaller, and the result is incorrect. If

this occurs, the result is corrected by inverting each bit

of the difference (this is the function of the five

exclusive OR gates) and adding i. If the carry bit is not

154

asserted, then the exclusive OR gates and the addition

operation have no effect. Either way, the 5-bit square law

circuit receives as input the absolute value of the

difference. The square law circuit is discussed in Section

4.2.1.

4.2.1 Square Law Circuit

The square of an N-bit number is at most a 2N-bit

number. By compiling a truth table for the 5-bit square

operation, one can derive the Boolean expression for each

bit of the result. These are as follows:

YO = xo

Yl = 0

Y2 = Xl'XO

Y3 = (x2"Xl'XO) + (X2"Xl'XO)

Y4 = (x2"xl'xO) + (X3"x2"xo) + (x3"x2"xo)

Y5 = [(x4"xl)'(x3 e x2)]

+ [XO" (X 4 ex3)" (x3 e X2)]

+ [x4"(x3 e x2) " (Xl e xO)]

Y6 = (x4"x3"_22) + (X4"x3 "x2"xl) + (x4"x3"x2"xl)

+ (x4"x3"xl'xO) + (X4.x3.xo)

+ (x3"x2"xl-xo)

155

Y7 = (x4"x3"x2) + (x4"x3"x2"xl)

+ (X4.x3.xl)

+ (x4.x 3-x 2"x 0)

Y8 = (x4"x3"x2) + (X4"x3"x2) + (x4"x3"xl)

+ (X4.x3.x0)

Y9 = (x4"x3) + (x4"x2"xl'x0)

The 5-bit square circuit show in Figures 4.14, 4.15, and

4.16, generates bits Y2 through Y9 according to these

expressions. The circuit is pipelined, as is the entire

decoder. The 5-bit square circuit is employed because it

was determined that the 16-state Ungerboeck code would

require 5-bit I and Q.

156

X0
X1
X2

X3

X4... XO

Figure 4.14. 5-bit square, part 1 of 3.

157

X4 ...XO

I

X4 ... XO

Figure 4.15. 5-bit square- part 2 of 3.

158

X4 ... XO

Y8

Figure 4.16. 5-bit square, part 3 of 3.

Admittedly, some hardware savings could be obtained by

using a code that can use 4-bit I and Q, and therefore a 4-

bit square circuit. The logical expressions for the 4-bit

square law circuit are as follows:

Y0 = x0

Yl = 0

Y2 = Xl'X0

Y3 = (x2"xl'x0) + (x2"xl'x0)

Y4 = (x2"xl'xO0) + (_3"x2"x0) + (x3"x2"x0)

y5 = (x3-x2"x I) + (x3"x2"x I) + (x3"x2"x 0)

y6 = (x3-x2) + (X3-x I)

y7 = x3.x 2

159

The 4-bit square circuit, as shown in Figure 4.17 can be

seen to be much smaller than the 5-bit square circuit.

X0

Xl

X2
Y3

X3
Y4

Y5

Y6

Y7

Figure 4.17. 4-bit square.

160

4.2.2 The Metric Adder

The metric adder performs the last step in the

calculation of the metrics. Eight metric adder circuits

are employed, each of which outputs the metric for one of

the eight 8-PSK symbols. The metric for any glven symbol k

is given by

Mk : (i k _ IR)2 + (Qk - QR) 2

where Ik and Qk are the I and Q components of the signal

vector, and IR and QR are the I and Q components. The

square difference terms are provided by the metric

components units discussed previously. Each metric adder

is given the two square difference terms which will result

in the metric for which it is responsible. The metric

adder circuit is shown in Figure 4.18. This circuit

operates by the same principle as the 5-bit adder discussed

previously, however there is an important difference. The

metric adder circuit adds two 8-bit numbers, producing a 9-

bit number, of which only the seven most significant bits

are used. In discarding the two least significant bits,

the most significant discarded bit must be carried into the

retained bits in order to produce correct binary rounding.

161

cO
N N N

"a

4-)

@

o

@
_4

t_

162

This is analogous to the rule that in decimal rounding,

discarding a digit of 5 requires the result to be rounded

up. The experiments with BOSS have shown that failure to

perform this step is almost as bad as losing one bit of

accuracy. How the rounding is accomplished can be seen in

Figure 4.18. In the first stage of the addition, the least

significant result bit (top row) cannot effect the final

rounded result, so it is simply thrown away. At the second

stage of the addition, the least significant result bit is

passed to a latch at the third stage, and then to one of

the inputs of the top row bit adder at the fourth stage.

After the fourth stage, the addition operation continues

normally, producing the required 7-bit metric.

4.3 The Add-Compare-Select Circuit

The add-compare-select (ACS) circuit consists of

sixteen identical add-compare select cells, each of which

stores the cumulative metric and selects the appropriate

branch for one of the sixteen nodes of the trellis. The

ACS unit is illustrated in Figures 4.19 through 4.22. Each

of the ACS cells receives four cumulative metrics from

other ACS cells, and four symbol metrics from the metric

calculation unit, as dictated by the trellis code.

163

M00...MO6

CM00...CM09

M20...M26

CM40...CM49

M40_M46

CM80...CM89

M60...M66

CM120...CM129

M40... M46

CM00...CM09

M60...M66 _--

CM40...CM49

M00...M06

CM80...CM89

M20...M26

CM120...CM129

M20...M26

CM00...CM09

M00...M06

CM40...CM49

M60...M66

CM80...CM89

M40...M46

CM120...CM129

M60...M66

CM00...CM09

M40_o M46

CM40...CM49 _-

M00...M06 ;#.Z._

CM80...CM89

M20...M26

CM120...CM129

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 SO

CCM2 Sl

TM3

CCM3

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 SO

CCM2 Sl

TM3

CCM3

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 Sl

TM3

CCM3

TMO ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 Sl

TM3

CCM3

'-J_CMO0...CM09

S00

S01

-_CM10...CM19

_Sl0

_Sll

-_CM20...CM29

$20

S21

--I_CM30...CM39

S30

S31

Figure 4.19. ACS unit, part 1 of 4.

164

M10...M16 ;_--

CM10...CM19

M50...M56

CM50...CM59

M30... M36

CMgO...CM99

MTO...M76

CM130...CM139

M50...M56

CMIO...CM19 _9.

M70...M76

CM50...CM59 _-

M10...M16 _--

CM90...CM99

M30...M36 =,,oZ._

CM130...CM139

M30...M36/_7

CM10...CM19

M10...M16 / -.-L

CM50...CM59

M50...M56/_..L

CM90...CM99

M70...M76/._L.

CM130...CM139

M70...M76 ;/.._L

CM10...CM19

M50,..MS6

CM50...ClV159 _-

M30...IV136

CM90...CM99

MlO.,.M16 _--

CM130,..CM139

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 Sl

TM3

CCM3

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 S1

TM3

CCM3

TMO ACS

CCMO CELL

TM1

CCM1 CM

TM2 SO

CCM2 Sl

TM3

CCM3

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 Sl

TM3

CCM3

--_LgCM40...CM49

S40

S41

--_CM50...CM59

$50

$51

--_CM60...CM69

S60

S61

"_CM70...CM79

S70

S71

Figure. 4.20. ACS unit, part 2 of 4.

165

M40...M46

CM20...CM29

M60...M66

CM70...CM79 :/._.-

MOO...M06

CM100...CM109

M20...M26

CM140...CM149

M00...M06 _ TM0

CM20...CM29 _70 CCM0
M20...M26 _ TM1

CM70...CM79 _70 CCM1
M40...M46 _ TM2

10
CM100...CM109 _ CCM2

M60...M66 _ TM3

CM140_.CM149 :_ CCM3

M60...M66

CM20...CM29

M40...M46

CM70...CM79

M20...M26/--7---

CM100...CM109

M00...M06 =/_Z._

CM140...CM149

M20...M26 _ TM0

CM20...CM29 _ CCM0
M00...M06 :_ TM1

CM70...CM79 _ CCM1

M60...M66 _ TM2

CM100...CM109 _ CCM2

M40...M46 _ TM3

CM140...CM149 :_ CCM3

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 Sl

TM3

CCM3

ACS
CELL

CM

SO
$1

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 $1

TM3

CCM3

ACS
CELL

CM

SO
$1

"-/_CM80...CM89

S80

$81

10
CM90...CM99

$90

S91

--_CM100...CM109

Sl00

_S101

-'/'_CM110...CM119

_S110

_Slll

Figure 4.21. ACS unit, part 3 of 4.

166

M50...M56

CM30...CM39/.Lg_

M70...M76 _-

CM40...CM49 _-

M10..M16 ;_-

CM110...CM119

M30...M36

CM150...CM159

M10_.M16 _-

CM30...CM39

M30...M36 _--

Clv140...CM49

M50...M56

CM110...CM119

M70...M76

CM150...CM159

M70...M76 _ TMO

CM30...CM39 _ CCMO

M50...M56 _ TM1

CM40...CM49 _ CCM1

M30...IV136 _ TM2

CM110...CM119 _ CCM2
M10...M 16 _4--:_1TM3

CM150...CM159 :_1CCM3

M30...M36 _ TMO

CM30...CM39 _ CCMO

M10...M16 _ TM1

Clv140...CM49 _ CCM1

M70...M76 _ TM2

CM110...CM119 _ CCM2

Iv150...M56 ;,'-----1 TM3
./ I

CM150...CM159 _ CCM3

TM0 ACS

CCM0 CELL

TM1

CCM1 CM

TM2 S0

CCM2 Sl

TM3

CCM3

TMO ACS

CCMO CELL

TM1

CCM1 CM

TM2 SO

CCM2 S1

TM3

CCM3

ACS
CELL

CM

SO

Sl

ACS

CELL

CM

SO

Sl

.1N
-/_-- C M 120,..CM129

_$12O

_$121

-_CM130...CM139

S130

_S131

-_CM140...CM149

_S140

iS141

.--s_CM150...CM159

_S150

_S151

Figure 4.22. ACS unit, part 4 of 4.

The decoder avoids the need to reset metrics by using

the modulo arithmetic method of Hekstra [19]. This method

requires that the register for the cumulative metric be

able to hold a number which is at least twice as large as

167

the larg6st difference which can occur between two path

metrics. This number is the largest branch metric used in

the system, multiplied by the constraint length of the

code. The constraint length of the 16-state Ungerboeck

code is 3, so the cumulative metric register must be able

to holc. a number which is 6 times the largest branch metric

used in the system. By this rule, the use of 7-bit branch

metrics leads to the use of 10-bit cumulative metrics.

The output of the ACS cell consists of a 10-bit number

giving the updated cumulative metric for the node, and two

bits identifying the converging path to be selected at the

node in accordance with the Viterbi algorithm. The new

cumulative metrics go back to the appropriate ACS cells,

the select variables go to the path memory unit.

The add-compare-select cell is shown in Figure 4.23.

This circuit is designed to perform the add-compare-select

function for a node to which four branches converge. This

is admittedly one of the places at which the pragmatic

code, in which only two branches converge to a node, would

be considerably simpler. The progressive adder (PROG

ADDER) circuit adds a transitional metric (TM) to a

previous cumulative metric to form a new path metric (Z an

ZZ) . The difference between Z and ZZ will be explained in

the discussion of the progressive adder.

168

w_ w_ w_ w_ w_ w_ w_ _ _ w_

0

0

o

c_o

0

d
0

0 0 IC 0

•- _-_,- ,'-"

)o ._;-

• __ • ,

I.- 0 I-- 0
0 0

O3
=E =_ =E

:_ .5 .5
0 o 0

.t"

=

_ I.,LI
-03

: >-
...i

_C.r

_C

B
m

:_ I.I.J
--U"_

¢ >-
J

.ol

)1

_-lll
--0"_

: >-

ff) ffl
t---112

_w

7-zoo
i,- ,,_w rr

_ _wl-
OC:_ O_W

O! ,,rr rr

-I

u4 _ b2 _ _

0 0 0 0 0
=E :E =_ =E :_

Od c_

d d

Ol
)1 (._1

d_ d_

: I--.

- iv.-_
I

. . I_ .
I

_.- |

)1

d_

0

.")

0 0 Ic

-:

: >- :>

O| _

I.-- o I- o
o o

oo

1"-

,<

Oxl

07
-,-4

169

The four progressive adders generate path metrics for

four contending paths. Each 10-bit select (10_BIT SEL)

unit compares two of the metrics and generates a bit (CC)

indicating which of the two metrics is least. Six

comparisons, all six combinations of two of the four

metrics are compared tc identify the least of the four

metrics. This allows the four-way comparison to be made in

the number of cycles required for a two-way comparison,

since all six comparisons are performed in parallel. The

more conventional approach of performing two two-way

comparisons (in parallel) and then a final comparison would

require twice as many cycles. As will be shown later, the

strategy of the design of this decoder makes it extremely

desirable that the add-compare select loop be kept as tight

as possible, which is why the six-way comparison strategy

was used.

The metric switch is really a unique form of a

multiplexer. The ACS cell must select one of four 10-bit

path metrics (from the progressive adders) to be the next

node metric. Each of the metric switches performs a four-

way switching operation for one of the ten bits of the

metric. The logic of the metric switch, shown in Figure

4.24, is designed to make the correct selection based on

the results of the six comparisons, CC0 through CC5. The

select logic, shown in Figure 4.25, is designed to convert

170

the six comparison resulffs into two bits which identify

which of the four bits was selected.

MMO

cco l___

_Z -__
MMO II

M%_O_III r_ r

Figure 4.24. Metric switch.

M

CCO'_ I _ _ ,---,

cc_'_l-'l _ _ >--I D I--so
°°_'--F-i-A=I _ _ ' '

CC5 __ O_L`__j_ $1

Figure 4.25. Select logic.

4.3.1 The Progressive Adder and the 10 bit Select

The purpose of the progressive adder is to add a

transitional metric, provided by the metric calculation

unit, to a previous cumulative metric, to generate a new

171

path metric. The purpose of the 10-bit selector is to

compare two path metrics. The progressive adder and the

10-bit selector were designed to work together.

The progressive adder, shown in Figure 4.26, is built

on the same pipelining strategy as the 5-bit adder, except

that each stage performs the addition of 2-bits, rather

than I. The 2-bit adder is shown in Figure 4.27. The use

of the 2-bit adder requires significantly more hardware

than the 1-bit adder, but helps to minimize the number of

clock cycles in the critical add-compare-select loop. In

the pipelined addition method, the less significant bits

become available before the most significant bits. In most

cases, the least significant bits are simply held until the

complete result is available, however, in this case, there

is an advantage to allowing the 10-bit selector to receive

the lower order bits as soon as they are available. This

will also help minimize the number of cycles in the ACS

loop. The output Z provides all of the bits of a sum at

the same time. The outputs ZZ provide the bits of the sum

as they become available. The latches on the outputs Z are

to cause the new metric to become available at the same

time the output as the corresponding output of the

selector.

172

N _ _ _ _ _ _N S N N N N

0

o

"0
<

-,-I

0

p

-,-I

173

X0

¥0

XI

¥I

Figure 4.27. 2-bit adder.

The 10-bit comparator, shown in Figure 4.28, is also

pipelined. The principle used is that the comparator makes

a comparison on the basis of the pair of bits which it has

most recently received from the progressive adders.

Because the less significant bits are received sooner, this

decision will be changed if the more significant bits,

received later, indicate a different decision. If the two

numbers are equal in the most recently received pair of

174

bits, then the comparator retains the previous'ly arrived at

decision.

Each stage of the 10-bit comparator is a 2-bit

selector (2 BIT SEL) as shown in Figure 4.29. The inputs

X0, Y0, Xl and YI, are pairs of bits from X and Y, the two

numbers to be compared. The output SY means that Y should

be selected on the basis of the X and Y inputs to the

current stage. The output SSY means that Y should be

selected based the basis of the information received at all

previous stages. The output EQ means that the 2-bit inputs

to the current stage are equal, i.e., X0 = Y0 and Xl = YI.

As can be seen, the inputs PSY, PEQ, and PSSY are simply

the corresponding signals, SY, EQ and SSY from the previous

stage.

When the 10-bit comparator compares two metrics, the

previously described process is applied to the nine least

significant bits of the two numbers. If the two numbers

differ in the most significant bit, the decision is

reversed by the 3 input exclusive OR gate, following the

last 2-bit selector stage. The reason for this is that the

decoder uses the idea of Hekstra [19] for avoiding metric

overflow. This allows that the arithmetic of the

cumulative metrics can be modulo-N, where N is a number

which is at least twice as large as the largest difference

possible between any two metrics. If it is known that it

175

0

E

r--

x

• o
x

X

0
.l..J

0
L)

.q
I

0

old
O_

-,-I

176

X0

YO

Xl

Y1

SY

EQ

PSY

PEG

PSSY

Figure 4.29. 2-bit selector.

SSY

is impossible for two metrics to be more than half a cycle

apart on the modulo-N circle, then there is no ambiguity as

to which is the greater. To illustrate the principle,

suppose we are comparing two running totals which we know

can never differ by more than i0. We could then store the

numbers in modulo-20 registers, but compare the numbers in

modulo-10. If both the numbers are greater than i0, or

both are less than I0, then the comparison is correct. If

only one of the two numbers is less than ten, then the

decision must be reversed, thus a non-zero digit in the

177

ten's column is a signal that the comparison is opposite.

The add-compare-select unit applies this principle to the

cumulative metrics, except that the storage register is

modulo-2 I0, and the comparison is modulo-2 9.

4.3.2 The ACS Feedback Loop

The add-compare-select loop introduces feedback into

the Viterbi algorithm, and in this important respect is

different from the metric calculation circuit. The add-

compare-select loop has been seen to limit the extent to

which the Viterbi algorithm can be sped up by pipelining

[Ii] . The important difference between the add-compare-

select operation and the metric calculation operation is

that the metric operation depends only on current data.

Every time a signal vector is received, the metric

calculator calculates a set of M metrics, where M is the

number of signal vectors, in this case 8. Because the

current metric calculation depends in no way on the result

of previous calculations, there is no reason why a current

metric calculation cannot begin its progression into the

pipelined metric calculator as soon as the previous metric

calculation has been clocked into a subsequent stage of the

pipeline. In this way, the sets of metrics are generated

at the rate at which new symbols are clocked into the

178

decoder, a rate %hich is limited only by the propagation

time between latches in the pipelined circuitry.

In the add-compare-select operation, the cumulative

metric, by definition, depends on the result of the

previous calculation. A subsequent symbol from a given

convolutionally encoded sequence cannot be processed until

the calculation of the cumulative metrics associated with

the previous symbol is complete. This implies that the

rate at which symbols can be processed is limited by the

speed at which the ACS operation can be completed.

The high-speed codec design circumvents the limitation

imposed by the ACS loop by making a small modification to

the coding standard. This works for the following reason.

Although the add-compare-select operation cannot process a

symbol from a convolutional code sequence until the

processing of the previous symbol from the same sequence is

complete, the pipelined hardware can begin the processing

of a symbol from other independent code sequences on the

immediately following clock cycles. Thus if there are

pipeline stages in the ACS calculator, the decoder will

process _ independent code sequences concurrently. Each

pipeline stage of the ACS unit will hold a calculation in

progress associated with a symbol from a different

sequence. The parameter _ will be referred to as the

overlap factor. Figure 4.2a shows the standard

179

convolutional encoder for the 16-state Ungerboeck code.

Figure 4.2b shows the modified convolutional encoder. The

only difference is that the modification replaces the

single delay units with multiple delay units, which delay

the input by _ clock cycles, as opposed to only I clock

cycle. The effect of this is that the modified encoder is

actually encoding the data onto _ independent code

sequences. The independent sequences follow each other in

rotation, while symbols from the same sequence follow each

other by _ clock cycles. Metrics from the metric

calculation unit arrive at the ACS unit according to the

same pattern, which is exactly what is needed to make the

decoder function properly. The metrics associated with a

symbol arrive at the ACS unit just as the ACS calculation

associated with the previous symbol of the same sequence is

complete. Meanwhile, the same hardware is being used to

process the other independent sequences.

The path memory unit must also be modified to

accommodate the modified coding standard. Note that the

basic cell of a generic path memory consists of a

multiplexer followed by a latch as shown in Figure 4.30a.

The modification required is exactly the same as the

modification introduced to the convolutional encoder. The

single latch is replaced by an _ stage delay as shown in

180

DATA FROM
PREVIOUS
STATGE

MUX .___ TONEXT
STAGE

(A)

(B)

DATA FROM
PREVIOUS
STATGE

MUX .__ TONEXT
STAGE

Figure 4.30. a) path memory cell. b) modified path memory

cell.

Figure 4.30b. The reason this works is as follows. The

purpose of the multiplexer is to select the data to be

loaded into the memory. The multiplexer selects the data

from the previous stage of the path selected in accordance

with the decision made by the ACS unit. Since there are

independent sequences, only one out of every _ decisions

pertains to a given code sequence. Thus the additional

stages of memory cause the data associated with a given

sequence to arrive at the switches of the next stage of the

path memory at the same time as the decisions associated

with the particular sequence are generated by the ACS unit.

The use of multiple independent coding sequences

allows a speedup in operation with a less than proportional

expansion in hardware. By allowing only a single code

sequence, pipelining the ACS operation does not change the

181

fact that symbols can only be processed at the rate at

which the ACS operation can be performed. Although the

exact speeds involved depend on the technology employed and

the specific structure of the ACS circuitry, it stands to

reason that if latches can be installed at the approximate

half-way points in all of the critical paths of the ACS

circuitry (_=2), the data rate of the overall system can

be approximately doubled with only a slight increase in the

hardware of the ACS unit. Certainly, a twofold increase in

speed has been obtained without a twofold increase in ACS

hardware. The effect of this strategy on the memory

hardware is that where there was formerly a latch and a

MUX, there are now two latches and a MUX. Since a latch

consists of two logic gates, and a (two-way) MUX consists

of three, the hardware in the path memory expands by

approximately 7/5, while increasing the speed of the system

by a factor of two. In the case of a trellis with four

branches expanding into a node, the benefits of this design

approach are comparable. For _ other than 2, it is a

matter of simple arithmetic that the expansion in hardware

is less than the increase in speed. It is, however,

desirable to minimize the length of the ACS path, since

this ultimately drives the size of the memory. In the

codec presented here, with the rule of no more than three

logic gates between any pair of latches, the ACS operation

182

came out to require 9 clock cycles, therefore an overlap

factor of _=9 was employed.

An approach to Viterbi decoder architecture that has

received some attention in recent literature, is the

combined trellis stage approach of Fettweis and Meyr [ii,

12]. This approach is termed as a linear scale solution,

because it offers an M-fold increase in speed in return for

an M-fold increase in the volume of the hardware of the ACS

unit. It is explained later that adopting the combined

trellis architecture in the place of the simple trellis

architecture multiplies the volume of the ACS unit by the

number of states of the trellis code, and the linear scale

solution is obtained thereafter. Fettweis and Meyr [II,

12] have applied their architecture to a 4-state binary

code. The high-speed TCM decoder does not use the combined

trellis architecture, because this approach introduces

considerable complexity, which is compounded for codes of

greater numbers of states.

The combined trellis stage approach consists of

forming a super trellis stage, which shows branches for all

of the state transitions which the encoder can make in M

steps of operation, unlike a standard trellis stage, which

shows only the transitions which the encoder can make in

one step. The authors of the combined trellis architecture

use the terminology, 1-step trellis to apply to the

183

standard trellis and M-step trellis to apply to the super

trellis. Presumably, if larger hardware can be built to

perform the ACS operation for the super trellis stage, the

data rate could be increased, since an M-step trellis

represents an M-fold increase in data, while the ACS

operation for the super trellis should require only

slightly longer than the ACS operation for the simple

trellis. To apply this approach, metrics must be

calculated for the branches of the combined trellis stage,

each of which now consists of M symbols. Also, the

operation of combining the trellis stages increases the

number of branches which connect into each node, and leads

to the formation of parallel branches, multiple branches

which connect the same pair of states. If the parallel

branches are eliminated prior to the super trellis ACS

operation, the number of branches converging into a single

node is limited to the number of states. Therefore, the

difficulty of applying the super trellis approach grows

substantially with the number of states of the code.

The combined trellis architecture uses conventional l-

step ACS units to calculate the metrics for the branches of

the super trellis. To obtain the desired increase in the

data rate, the 1-step ACS units must be paralleled by a

factor of M, and the incoming data (symbol metrics) must be

blocked to drive the parallel units. Fettweis and

184

Meyr [ii,12] recommend that the resultant increase in

hardware be minimized by the interleaving of pipelined

architecture, that is an ACS unit which is pipelined in P

segments can be responsible for P ACS calculations.

Furthermore, the 1-step ACS units are combined with 1-step

path memory of length M, so that the complete structure

serves to preselect parallel branches, prior to the M-step

ACS operation. The net result of all this is that the ACS

architecture for the super trellis consists of an M-I by S

(S is the number of states) array of 1-step Viterbi

decoders. Thus, for a code with a larger number of states,

the additional hardware can be extensive. Furthermore, the

M-step ACS unit and the M-step path memory unit must be

designed to handle up to S converging branches.

For the 4-state binary code, the complications of the

super trellis approach are constrained within reasonable

limits. For the 16-state Ungerboeck approach, a less

complicated approach was needed, therefore the previously

discussed, independent code sequence method was adopted.

The independent code sequence multiplies the size of the

path memory, while the expansion of the ACS hardware is

limited to the introduction of latches needed to implement

pipelining. The super trellis approach introduces an M-

fold increase in ACS hardware, and the additional memory

necessary to implement the array of 1-step Viterbi

185

decoders. For both approaches, the exact degree of

hardware expansion (taking into account both the ACS unit

and the path memory) is highly dependent on the code

adopted, however, in the case of TCM with 16-states or

greater, I believe that the independent code sequence

approach will require less total hardware.

4.4 The Path Memory Circuit

The path memory circuit consists of a number of

identical stages, as shown in Figure 4.31. The number of

stages corresponds to the number of branches which the

decoder stores in its memory of the maximum likelihood path

to each state. This design parameter is referred to as the

decoder depth or the trace-back depth. The performance of

the decoder improves significantly with decoder depth up to

a point that depends on the individual code. At this

point, very little improvement will result from further

increasing the decoder depth. There is no known analytical

means for determining the required decoder depth, so this

parameter is usually found empirically. A commonly used

rule of thumb is that the decoder depth should be five

times the constraint length of the code. This rule applies

to codes in which two branches converge into a node. For

codes in which more than two branches converge, and for

186

punctured codes, a longer decoder depth is usually

required. In fact, manufacturers offer decoders which

operate in either a short trace-back mode or a long trace-

back mode, recommending that the long trace-back for

punctured operation. The decoder depth for the high-speed

decoder was found by exp_rimentation with BOSS. Figure

4.31 shows that the flow of data in the path memory follows

the trellis structure of the code. The connections are

shown in more detail in subsequent illustrations. Each

stage of the path memory, shown in Figures 4.32 and 4.33,

consists of 16 identical path cells, each of which is

responsible for one node of the trellis. Each path cell

consists of a dual 4 to 1 MUX followed by 9 latches as

shown in Figure 4.34. The select inputs, SO and Sl are

generated by the add-compare-select circuit. There is a

different pair of select inputs for each state; however,

the same set of select signals is used at each stage of the

path memory. Since four branches converge into each node

of the trellis, each branch represents two bits of

originally encoded data. The inputs D00 through D31

represent the data associated with the converging paths,

two bits from each of four previous nodes. The outputs Q0

and Q1 represent the data from the selected path. Figures

4.32 and 4.33, show how the path cells of a given stage are

connected to the previous stage. Here N denotes the an

individual stage of the memory, N-I denotes a previous

187

stage. Data lines are indicated by Q, select lines are

indicated by S.

1111! II I I
w

+

IO

_9v

!

p

w
I(gA

n00v

IIIIIIIIIIIIII

4J
°r4

0

U

0

eO

@

D

188

SO0

sol --_
Q(N- 1)0 _f_"2

Q(N-1)4--_2

Q(N-1)8_- 2

Q(N-1)I 2--/'-

SlO----'_

Sll ---_"

Q(N-1)O--_2

Q(N-1)4_

Q(N-1)8--_--
Q(N- 1)12 -'-/'-

S20 --

s21 --E
Q(N-1)0--_- 2

Q(N-1)4---_- 2

Q(N-1)8--_- 2

Q(N-1)I 2 ---/--

$30

s31 ----£
Q(N-1)O_

Q(N-1)4--_" 2

O(N-1)8--'_"2
Q(N-1)12

Figure

SO

$1

DO

D1

D2

D3

SO

$1

DO

D1

D2

D3

PATH
CELL

Q

%"1
Q

SO PATH

$1 CELL

DO

D1

D2
Q

D3

SO PATH

$1 CELL

DO

D1

D2
Q

D3

4.32.

$40 --

s41--E
Q(N-I)I

Q(N-1)5--_2

Q(N- 1)9 _/_-2
Q(N-1)I3--;, z--

SO

$1

DO

D1

D2

D3

PATH
CELL

Q

S50

ssl _-
Q(N-1)1 --_2

Q(N-1)5 _2

Q(N-1)9-_
Q(N-1)13 "7"--

SO PATH

$1 CELL

DO

D1

D2
Q

D3

S60

s61--_
Q(N-I)I

Q(N-1)5

Q(N-1)9--_2
Q(N-1)13-'/-

SO PATH

$1 CELL

DO

D1

D2
Q

D3

2
--_--Q(N)3

S70

S71

Q(N-1)1 "_2

Q(N4)5--_2
Q(N- 1)9 _/E'2

Q(N-1)13

SO

$1

DO

D1

D2

D3

PATH
CELL

2
Q --/---Q(N)7

Path memory stage, part 1 of 2.

189

$80--

s81
Q(N-1)2

Q(N-1)6

Q(N-1)10

Q(N-1)14_

$90--

$91

Q(N-1)2 "_2

Q(N-1)6 '_2

Q(N-1)IO --_-2

Q(N-1)14--_-

$100--

S101"_--

Q(N-I)2

Q(N-1)6

Q(N-1)10
Q(N-1)14-7 _

S0 PATH

Sl CELL

DO

D1

D2
Q

D3

SO PATH

$1 CELL

DO

D1

D2
Q

D3

SO PATH !

$1 CELL

DO

D1

D2
Q

D3

Sl10--

Sl11-'-"_

Q(N-1)2 "_2

Q(N-1)6--_- 2

Q(N-1)10 -_2
Q(N-1)14 ---/'-

SO PATH

$1 CELL

DO

D1

D2
Q

D3

Figure 4.33.

$120-- "

$121 "--_-

Q(N-1)3

Q(N-I)5

Q(N-1)11

Q(N-1)15_

SO

$1

DO

D1

D2

D3

PATH
CELL

Q
2

Q(N)12

2

_Q(N)9

$130--

S131 -_"

Q(N-1)3

Q(N-1)5 --_2

Q(N-1)11
Q(N-1)15--'f-

SO

$1

DO

D1

D2

D3

PATH
CELL

Q
2

Q(N)13

2
_Q(N)IO

S140--

s141--£
Q(N-1)3 --_2

Q(N-1)5 --/_-2

Q(N-1)11
Q(N-1)15---/--

SO

$1

DO

D1

D2

D3

PATH
CELL

Q
2

--/-- Q(N)I 4

2
Q(N)I 1

$150--

S151_

Q(N-I)3

Q(N-1)5

Q(N-1)I 1
Q(N- 1)15--/--

SO PATH

$1 CELL

DO

D1

D2
Q

D3

2
-'/--Q(N)15

Path Memory Stage, part 2 of 2.

190

S0--

$1

D00

D10

D20

D30

D01

Dll

D21

D31

SO MUX

Sl

1C0

1C1

1C2
1Y

1C3

2C0

2C1

2C2
2Y

2C3

Q0

_Q1

Figure 4.34. Path cell.

4.5 Testing The High-Speed Codec

The block-oriented systems simulator (BOSS) was used

to select the design parameters for the high-speed decoder,

to test the bit error rate performance, and to verify the

final logic. After deciding upon the coding standard, the

next consideration was the resolution of the I and Q

inputs, and the resolution of the metrics. Table 4.1 shows

the bit error rates of various the resolutions of signal

vectors and metrics, obtained at by simulating at Es/N0 =

10dB. As can be seen, the performance of any particular

combination cannot be easily predicted by studying the

effect of I and Q quantization and metric quantization

independently. Since the pragmatic standard stands a good

191

cnahce of becoming the defacto coding standard of the

future, it was considered necessary that the high-speed

decoder should achieve performance comparable to the

pragmatic decoder at a bit error rate of 10 -5 . To do this,

a bit error rate of less than 3 x 10 -6 at Es/N 0 = 10dB was

necessary. As can be seen from the table, the 16-state

Ungerboeck code accomplishes this with 5-bit I and Q and 7-

bit metrics. Unfortunately, it was difficult to obtain

reliable results, since a trial of 5 million symbols is

barely sufficient to measure a bit error rate of 10 -6 , and

this was taxing the computer time available for the

project. For 8-bit I and Q, the simulation detected no

errors in a trial of one million symbols, showing that it

is not unreasonable to expect performance which is slightly

better than that of pragmatic TCM.

4.5.1 Selection of Quantization Parameters

Signal vector quantization and metric quantization are

not interchangeable. Usually the requirement for metric

quantization is driven by the degree of signal set

quantization. For example, the use of N-bit I and Q

components results in 2N-bit square difference terms, two

of which are added to produce a 2N+I bit metric.

Therefore, if 4-bit I and Q quantization were decided on, a

192

9-bit metric represents no further compromise of

performance, that is nine bits is the maximum useful metric

resolution for 4-bit I and Q, whereas ll-bit I and Q is the

maximum useful metric resolution for 5-bit I and Q.

z 4-BIT
O
__. 5-BIT

.J 6-BIT
O
oo 7-BIT
W
rr 8-BIT
(..)
E: 9-BIT

w 10-BIT

:_ 11 -BIT

lAND Q RESOLUTION

4-BIT 5-BIT

4.15E-5

6.5E-6 1.25E-5

3.7E-6 4.8E-6

3.4E-6 2.1 E-6

2.8E-6 1.8E-6

3.1E-6 1.2E-6

1.2E-6

Table 4.1. Decoder bit error rate at Es/N0=I0dB.

Table 4.1 shows the bit error rate as a function of

metric resolution and I and Q resolution, at Es/N0=I0dB.

The results of Table 4.1 show that if the metrics are

quantized to a low level of resolution, an increase in I

and Q resolution will not necessarily result in an

improvement in performance unless also accompanied by an

increase in metric resolution. As can be seen, with 5-bit

metrics the performance of 5-bit I and Q is worse than the

performance of 4-bit I and Q° Also, we can see from the

chart that with 4-bit I and Q, the performance with maximum

metrics is 3x10 -6, which is comparable to the performance

193

of the multimode codec, which used 4-bit I and Q and 4-bit

metrics. By using 5-bit I & Q, the 16-state Ungerboeck

code improves its performance by approximately a factor of

two, achieving performance comparable to unquantized

pragmatic TCM. These results were based on trials of 5

million symbols, except for the three results presented for

4- and 5-bit metrics, which were based on 1 million

symbols. One of the problems encountered is that 5 million

symbols may not have been a sufficient simulation length to

obtain confident results. In running the final performance

tests for the decoder, a different random sequence was used

and a bit error rate of 3.8xi0 -6 was obtained. The

variance for the final performance trial, which also used 5

million symbols was calculated at 1.2x10 -6 In light of

this, a decision to use 5-bit I and Q and 7-bit metrics

probably represents a worst case scenario. However, since

the logic has been worked out for these parameters,

designing a simplified version of the circuit, if desired,

should not be a problem.

Quantization significantly affects the size of the

overall machine. For example, if 4-bit I and Q are used,

then the 4-bit square circuit of Figure 4.17 rather than

the 5-bit square circuit of Figures 4.14 through 4.16, and

as can be seen the 4-bit square circuit is considerably

smaller. With 6-bit I and Q, the design of a specialized

194

metric calculation would be even more difficult, and it is

at this point that a metric RAM would be considered.

Metric quantization affects the size of the add-compare-

select unit, while the number of cycles in the add-compare-

select unit dictates the size of the memory. Therefore, it

is extremely worthwhile to let the metric resolution be the

minimum required to achieve the desired performance. From

the chart we see that 4-bit I and Q with 4-bit metrics is

not an acceptable option for this project, since the

resulting performance is not even within the order of

magnitude of the desired performance. The use of 4-bit I

and Q with 6-bit metrics could be an acceptable option,

although the performance falls slightly short of pragmatic

TCM. The use of 5-bit I and Q with 7-bit metrics achieves

performance comparable to pragmatic TCM.

4.5.2 Simulation Design

Several models of the high-speed decoder were built in

BOSS, the two most important of which are the logic level

simulation and the high level simulation. The logic level

version was built solely out of logic gates, to verify the

logic as presented in the illustrations in this chapter.

The higher level version was constructed out of higher

level modules, some of which were written in FORTRAN code.

195

This approach was necessary because, due to the way BOSS

works, the time required to complete simulations of the

logic gate model would have made performance testing

infeasible. The higher level model requires shorter

simulation times and allows the degree of quantization to

be easily changed, since it is controlled by a numerical

parameter. Changing the degree of quantization requires a

complete change in structure of the logic model. Once

performance results were obtained for the high level model,

the design parameters were decided upon and the logic level

model was built. That the logic level model is

functionally identical to the higher level model was

verified through shorter simulation runs, specifically by

showing that identical random input sequences produce

identical error counts.

4.5.3 High Level Simulation

The high level simulation is shown in Figure 4.35.

The module ARCH DATA generates signal vectors to which

Gaussian random vectors are added to simulate the effect of

noise. The module IQ CONVERT quantizes the I and Q

components of the received signal vector on a scale of 0 to

L-l, where L is the number of quantization levels, a

196

I o
-,--I
.l-.J

E
-,-I

0')
O_
0

-,.-I

i1)

t_
-,-I

197

controllable parameter. The metrics are calculated using

strictly integer arithmetic; however, before being sent to

the ACS module, they are divided by a reduction factor and

then rounded to another integer. The reduction factor

controls the precision of the metrics used by the ACS unit.

If a reduction factor of 1 is used, the precision of the

metrics is the maximum useful precision given the degree of

I and Q quantization. If a different reduction factor is

used, the precision of the metrics (in bits) is 2N+I-

log2(R), where N is the number of bits used for I and Q and

R is the reduction factor.

The module ACS UNIV performs the add-compare-select

function for the Viterbi decoder, and is implemented as a

BOSS primitive, i.e., the module is defined in FORTRAN

code. This module is written to work for any trellis code

defined by the previous symbol table and previous state

table, which in this case are supplied by the modules

PREV SYM 16"4/8 and PREV STATE UNIV, respectively. These

modules are also implemented as primitives. The previous

symbol table is specifically for the code being used here,

the previous state module is written to work for any shift

register convolutional code, given the number of states and

the number of input bits. The path register module is also

designed to work for a variety of codes. Once the data is

clocked out of the path register module, it is converted to

198

binary form, by the module OCT TO BIN. The data is then

compared to the original data to obtain an error count. In

the high level simulation, delays are introduced to

correspond with the delays introduced by pipelining in the

logic level simulation. This is necessary to assure that

at any time, every part of the high-level simulation is

handling exactly the same data as the corresponding part of

the logic level simulation.

4.5.4 Logic Level Simulation

The top level diagram of the logic level simulation is

shown in Figure 4.36. The logic level simulation uses

exactly the same data and error counter as the high-level

simulation. The 5-bit receiver quantizes the received I

and Q components to 32 levels and gives the output in

binary form. Here, the modules 7_BIT METRIC GENERATOR,

i0 BIT ACS UNIT, and PATH UNIT D9, correspond to the three

blocks of the top level diagram of the decoder itself.

They are implemented in basic logic which corresponds to

that illustrated in the diagrams of this chapter. Short

runs, using controlled pseudo-random sequences verified

that the logic level simulation functions exactly the same

as the high-level simulation.

199

E

":_I_I

0
-,-I

,---t

-,-4

0

,--I
I1)

- ,.--I
t_
0

t_

2OO

4.6 Conclusion

A complete logic design has been presented for a

Viterbi decoder to decode the rate 2/3 8-PSK 16-state

Ungerboeck TCM code. To achieve high-speed operation, the

design has been pipelined throughout, with a maximum of

three logic gates between any pair of latches. Higher

speeds with slightly greater hardware volume could be

obtained by using fewer than 3-gates between latches.

Simulations were employed to determine that the design

should use 5-bit I and Q components and 7-bit branch

metrics. Special circuitry was designed to calculate the

branch metrics using Boolean Algebra. A simple approach

for circumventing the ACS feedback loop was presented.

The performance of the high-speed decoder is shown in

Figure 4.37. The variance of the result was calculated by

dividing the simulation time into ten equal intervals, and

calculating the sample variance

Ii I0

as (_s = _i___l(Xi-_)2 The

_s

variance of the mean was calculated as O=_. At Es/N 0 =

10dB, it can be seen that the decoder has nearly approached

the asymptotic error rate for pragmatic TCM, and achieves

performance equivalent to quantized pragmatic TCM.

201

Although the high-speed TCM decoder uses the 16-state

Ungerboeck code, the architectural approach could also have

been applied to other coding standards, such as pragmatic

TCM. The performance of the high-speed design was

simulated using BOSS. The results of the simulation are

shown in Figure 4.37. At a bit error rate of 10 -5 , the

performance of the high-speed TCM decoder is comparable to

the performance of pragmatic TCM. The logic of the

complete system has been verified using BOSS. The high-

speed decoder design presented here is ready for VLSI

development.

202

-1
10

-2
10

UJ
I- -3
< 10
tr

rr
0
rr
rr
LU

-4--
-- 10
rn

-5-
10

I I I I I I

_QPSK

PRAGMATIC
ASYMPTOTIC

16-STATE
DECODER

__+(_

Es/N0 dB

Figure 4.37. Performance of the high-speed decoder.

2O3

5. CONCLUSION

5.1 Summary

The design for the high-speed decoder is ready for

VLSI development. Based on data obtained from simulations,

it is recommended that the high-speed decoder be built to

process the rate 2/3 8-PSK 16-state Ungerboeck [2, 3] code,

receive signal vectors in the form of 5-bit I and 5-bit Q,

generate 7-bit branch metrics for the decision unit, which

will retain 10-bit metrics, and use the alternative to

cumulative metric rescaling suggested by Hekstra [19]. It

is also recommended that the decoder should have a survivor

memory of 40, which can be reduced to 30 if additional

circuitry is added to select the output data from the

minimum metric path in the path memory.

It is by no meaps suggested that the decoder would not

be successful if alternative design parameters were used.

For example, the design strategies presented here could

have been applied to a pragmatic TCM decoder, or even a

multimode decoder. The motivation behind the use of the

16-state Ungerboeck code is that it would allow error

correcting performance equivalent to that of pragmatic TCM,

with less hardware volume. Another reason for choosing the

16-state Ungerboeck code for this project is to gain

additional knowledge. Due to the wide acceptance of

pragmatic TCM, the coming decade should see ample data to

204

document the performance of this code. Based on the bit

error spectrum calculation, the 16-state Ungerboeck code

should out perform pragmatic TCM at bit error rates < 10-6,

where computer simulation data is difficult to obtain.

Therefore, construction of a chip to implement this

standard would allow the acquisition of data which might

not be attainable otherwise. The pragmatic standard has

the advantage of wide acceptance, and relatively easy

integration into existing systems. Other changes in the

design parameters might result in only a slight compromise

in performance, such as using 4-bit I and Q, rather than 5-

bit I and Q.

The development of the high-speed codec proceeded as

follows:

I) As proof of concept, a logic gate BOSS model was

built, using the strategies presented here, but with 4-bit

I and Q and four bit branch metrics. This model receives

no attention in this report.

2) Higher level BOSS simulations were constructed to

determine performance, at Es/N0=I0dB, of the decoder as a

function of I, Q and metric resolution, using a decoder

depth of 80. It was determined that the final design would

use 5-bit I and Q and 7-bit branch metrics.

3) The logic gate model was upgraded to the new design

parameters.

205

4) Additional tests were conducted to determi_,e the

necessary decoder depth.

5) Final performance tests were conducted to determine

performance from Es/N0 from 6dB through 10dB.

5.2 Suggestions for Further Research

It is almost certain that the Telemetry Center will

develop a VLSI implementation based on the logic design

presented here. Additional research will be done to attain

the maximum attainable clock speed, and to select a

substrate technology. CMOS is the most likely candidate

for substrate technology.

The bit error spectrum technique has potential for a

much wider variety of codes than are presented here. Other

code rates and modulation formats, or more powerful codes

could be investigated. Also, the C language code could be

ported to a workstation more powerful than a PC. Some

additional theoretical work is needed to determine the

conditions under which the union bound summation will or

will not converge. This could be based on the fact that

the number of paths grows exponentially while the Q()

function, which is used to calculate the probabilities of

individual error events, can also be bounded by exponential

expressions. Then the standard conditions for convergence

206

of infinite series could be applied. Research in

convolutional codes will also lead to research in

concatenated codes and the effect of interleaving on

convolutional codes.

207

REFERENCES

[1] Viterbi, A.J., "Convolutional Codes and their

Performance in Communication Systems," IEEE

Transactions on Communication Technology, Vol. CT-19,

pp. 751-771, October 1971.

[2] Ungerboeck, Gottfried, "Trellis-Coded Modulation with

Redundant Signal Sets, Part I: Introduction," IEEE

Communications Magazine, Vol. 25, No. 2, pp. 5-11,

February 1987.

[3] Ungerboeck, Gottfried, "Trellis-Coded Modulation with

Redundant Signal Sets, Part II: State of the Art,"

IEEE Communications Maoazine, Vol. 25, No. 2, pp. 12-

21, February 1987.

[4] Ungerboeck, Gottfried, "Channel Coding with

Multilevel/Phase Signals," IEEE Transactions on

Information Theory, Vol. IT-28, No. i, pp. 55-67,

January 1982.

[5] QUALCOMM Inc., Viterbi Decoder on a Single Chip, K=7,

Rate 1/2, San Diego, California, October, 1988.

[6] QUALCOMM Inc., Multi-Code Rate Viterbi Decoder, K=7,

San Diego, California, June, 1990.

[7] Viterbi, Andrew J., Jack K. Wolf, Ephraim Zehavi,

Roberto Padovani, "A Pragmatic Approach to Trellis-

Coded Modulation," I_EE Communications Magazine, Vol.

27, No. 7, pp. 11-19, July 1989.

[8] Carden, Frank, "A Quantized Euclidean Soft-Decision

Maximum Likelihood Sequence Decoder: A Concept for

Spectrally Efficient TM Systems," Proceedings of the

International Telemetering Conference, Vol. XXIV, pp.

375-384, October 1988.

[9] Carden, Frank, and Brian Kopp, "A Quantized Euclidean

Soft Decision Maximum Likelihood Sequence Decoder of

TCM," IEEE Military Communications Conference, Vol. 2,

pp. 279-682, October 1988.

[i0] Carden, Frank, and Michael Ross, "A Spectrally

Efficient Communication System Utilizing a Quantized

Euclidean Decoder," Proceedings of the International

Telemetering Conference, Vol. XXV, pp. 575-582,

October 1989.

208

[ii] Gerhard Fettweis and Heinrich Meyr, "High-Speed

Parallel Viterbi Decoding: Algorithm and VLSI-

Architecture", IEEE Communications Magazine, May 1991.

[12] G. Fettweis and H. Meyr, "Parallel Viterbi Algorithm

Implementation: Breaking the ACS-Bottleneck," IEEE

Transactions on Communication, Vol. COM-37, pp. 785-

790, Aug 1989.

[13] Rouanne, Marc, and Daniel J. Costello, Jr., "An

Algorithm for Computing the Distance Spectrum of

Trellis Codes_" IEEE Journal on Selected Areas in

Communication, Vol. 7, No. 6, August 1989.

[14] Bellman, R., and S. Dreyfus, Applied Dynamic

_LQ_L_/L_, Princeton University Press, Princeton,

New Jersey, 1962.

[15] Lin, S. and Daniel J. Costello, Jr., Error Control

Coding: Fundamentals and Applications, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1983.

[16] G.C. Clark and J.B. Cain, Error Correcting Coding for

Digital Communications, Plenum Press, New York, 1981.

[17] Forney, G. David, Jr., "Convolutional Codes I:

Algebraic Structure," IEEE Transactions on Information

_, Vol. IT-16, No. 6, pp. 720-728, November 1970.

[18] William Osborne, Frank Carden, Brian Kopp, and Mike

Ross, "Multi-Mode Modem/Codec Designs", AIAA

Communication Satellite System Conference, 1991

[19] Hekstra, A.P. "An Alternative to Metric Rescaling in

Viterbi Decoders," IEEE Transactions on

Communications, vol. 37, pp. 1220-1222, Nov. 1989.

[20] QUALCOMM Inc., Pragmatic Trellis Decoder, San Diego,

California, May 1992.

[21] Fang, "A Coded 8 MHz System for 140 Mbps Information

Rate Transmission Over 80 MHz Nonlinear Transponders,"

ICDSC, 305-313, 1986.

[22] Shannon, C.E., "A Mathmatical Theory of

Communication", Bell System Technical Journal, vol.

27, pp 379-423,623-656, 1948.

209

[23] Wozencraft, J.M., and R,S. Kennedy, "Modulation and

Demodulation for Probabalistic Coding", IEEE

Transactions on Information Theory, vol. IT-12, no. 3,

pp. 291-297, July 1966.

[24] Massey, J.L., "Coding and Modulation in Digital

Communication," prQCeedings of the International

Zurich Seminar on digital Communications," 1974, pp.

E2(1)-E2(4) .

[25] Gallager, R.G., "A Simple Derivation of the Coding

Theorem and Some Applications," IEEE Transactions on

Information Theory, vol. IT-II., pp. 3-18, January

1965.

[26] Parsons, R.D., and S.G. Wilson, "Polar Quantizing for

Coded PSK Transmission," IEEE Transactions on

Communications, vol. 38, no 9., pp. 1511-1519,

September 1990.

[27] Lee, L.N., "On Optimal Soft-Decision Demodulation,"

_EEE Transactions on Information Theory, vol. IT-22,

pp. 437-444, July 1976.

[28] Ross, Michael, Frank Carden and William P. Osborne,

"Pragmatic Trellis-Coded Modulation: Using 24-sector

Quantized 8-PSK." International Phoenix Conference on

Computers and Communications, 1991.

[29] Ross, Michael, William P. Osborne, Frank Carden and

Jerry L. Stolarczyk, "Pragmatic Trellis-Coded

Modulation: A Hardware Simulation Using 24-sector 8-

PSK," Supercomm/ICC, 1992.

[30] Carden, Frank, and Michael Ross, "64-State TCM for

Spectrally Efficient Space Communications," NAECON-91.

[31] Zehavi, Ephraim, and Jack K. Wolf, On the Performance

Evaluation of Trellis Codes," IEEE Transactions on

Information Theory, vol. IT-33, no. 2, March 1987.

[32] Cain, C.G. Clark Jr., & J.M. Geist, "Punctured Codes

of rate (n-l)/n and Simplified Maximum Likelihood

Decoding," _EEE Transactions on Information Theory,

vol. IT-25, pp 97-100, Jan 1979.

210

